タグ「距離」の検索結果

23ページ目:全233問中221問~230問を表示)
北海学園大学 私立 北海学園大学 2010年 第2問
座標平面上に

円$C:x^2+y^2=10$
直線$\ell:y=-x+4$

があり,円$C$と直線$\ell$の交点を$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$とする.ただし,$x_1>x_2$とする.

(1)$\mathrm{P}$と$\mathrm{Q}$の座標をそれぞれ求めよ.また,線分$\mathrm{PQ}$の長さを求めよ.
(2)$\mathrm{P}$,$\mathrm{Q}$における円$C$の接線をそれぞれ$\ell_1$,$\ell_2$とおく.$\ell_1$と$\ell_2$の方程式を求めよ.また,$\ell_1$,$\ell_2$の交点$\mathrm{R}$の座標と線分$\mathrm{PR}$の長さを求めよ.
(3)原点$\mathrm{O}$と直線$\ell$の距離$d$を求めよ.また,三角形$\mathrm{OPQ}$の面積$S$を求めよ.
東北学院大学 私立 東北学院大学 2010年 第4問
曲線$y=9-x^2$上に$2$点$\mathrm{A}(-3,\ 0)$,$\mathrm{P}(t,\ 9-t^2)$をとる.次の問いに答えよ.ただし,$-3<t<3$とする.

(1)$\mathrm{P}$から$x$軸に垂線$\mathrm{PQ}$をおろすとき,$\triangle \mathrm{PAQ}$の面積の最大値と,そのときの$t$の値を求めよ.
(2)点$\mathrm{P}$におけるこの曲線の接線と原点との距離が$3$であるとき,$t$の値を求めよ.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)分数式$\displaystyle \frac{x^3+2x^2+4x-7}{x^2+2x-3}$を約分して既約分数にすると$[ア]$である.また,等式$ax(x-1)+b(x-1)(x-2)+c(x-3)=3x^2+2x+1$が$x$についての恒等式となるように$a,\ b,\ c$の値を定めると,$(a,\ b,\ c)=[イ]$である.
(2)$3^{30}$の桁数を求めると$[ウ]$である.また,$\displaystyle \left( \frac{1}{9} \right)^{40}$を小数で表すと小数第$n$位に初めて$0$でない数が現れ,$n=[エ]$である.ただし,$\log_{10}3=0.4771$とする.
(3)$2$次関数$f(x)=ax^2+bx+c$は$x=1$で最小値$-1$をとる.$f(x)=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha^4+\beta^4$を$a$で表すと$\alpha^4+\beta^4=[オ]$である.また,$\alpha^4+\beta^4>6$を満たす$a$の値の範囲を求めると$[カ]$である.
(4)$a \geqq 0$とする.$2$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(a,\ 3)$からの距離の比が$2:1$である点$\mathrm{P}$の描く図形の方程式は$[キ]$である.また,この図形が直線$y=x+2$と$2$つの共有点$\mathrm{C}$,$\mathrm{D}$をもち,線分$\mathrm{CD}$の長さが$2 \sqrt{2}$であるとき,$a$の値を求めると$a=[ク]$である.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)不等式$\log_2 (x^2-3x+6)>1+\log_2x$を満たす$x$の範囲は$[ア]$と$[イ]$である.
(2)実数係数の$3$次方程式$x^3-4x^2+ax-8=0$が,解$1+bi$($b$は正の実数)をもつとき,$a=[ウ]$,$b=[エ]$である.
(3)$\angle \mathrm{B}$が直角の直角三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の大きさを$15^\circ$,$\mathrm{AC}$の長さを$b$とする.この三角形の面積を$b$で表すと$[オ]$であり,$\mathrm{BC}$の長さは$[カ]$である.
(4)円$x^2+y^2=1$の上を動く点$\mathrm{A}$と点$\mathrm{B}(0,\ -3)$,点$\mathrm{C}(4,\ 0)$の$3$点を頂点とする三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.$\mathrm{G}$の軌跡は方程式$[キ]$で表され,$\mathrm{A}$と$\mathrm{G}$の距離の最大値は$[ク]$である.
(5)整式$f(x)$が,$\displaystyle \int_0^x f(t) \, dt+\int_0^1 xf(t) \, dt=x^2+2x+a$($a$は実数)を満たすとき,$a=[ケ]$,$f(x)=[コ]$である.
学習院大学 私立 学習院大学 2010年 第4問
$a$を正の実数とする.$y$軸上に点$\mathrm{P}(0,\ a)$があり,点$\mathrm{Q}$は放物線$C:y=x^2$上を動く.

(1)$\mathrm{P}$と$\mathrm{Q}$の距離の最小値を$a$で表せ.また,その最小値を与える点$\mathrm{Q}$の座標を求めよ.
(2)$a=5$の時,$\mathrm{P}$と$\mathrm{Q}$の距離を最小にする点$\mathrm{Q}$は$2$つある.これらの点を$\mathrm{Q}_1$,$\mathrm{Q}_2$とする.$\mathrm{Q}_1$,$\mathrm{Q}_2$における$C$の接線をそれぞれ$\ell_1$,$\ell_2$とし,その交点を$\mathrm{R}$とする.$\ell_1$,$\ell_2$の方程式と$\mathrm{R}$の座標を求めよ.
中央大学 私立 中央大学 2010年 第2問
地球が半径$6378 \, \mathrm{km}$の完全な球であると仮定する.地球の中心を$\mathrm{O}$,北緯$45$度,東経$150$度の地点を$\mathrm{A}$,南緯$45$度,西経$120$度の地点を$\mathrm{B}$とする.このとき,次の問いに答えよ.

(1)$\angle \mathrm{AOB}$の大きさを求めよ.
(2)$\mathrm{A}$から$\mathrm{B}$へ地球の表面上を最短の時間で移動するときの$\mathrm{AB}$間の距離を求めよ.ただし,円周率の値は$3.14$とする.
神奈川大学 私立 神奈川大学 2010年 第3問
曲線$C:y=e^x$と直線$\ell:y=x$について,次の問いに答えよ.ただし,$e$は自然対数の底である.

(1)曲線$C$上の点$\mathrm{P}(t,\ e^t)$を通り,直線$\ell$と直交する直線の方程式を求めよ.
(2)$(1)$で求めた直線と直線$\ell$との交点$\mathrm{Q}$の座標を$t$で表せ.
(3)点$\mathrm{P}$と点$\mathrm{Q}$の距離を$t$で表せ.
(4)$(3)$で求めた距離の最小値を求めよ.
首都大学東京 公立 首都大学東京 2010年 第2問
以下の問いに答えなさい.

(1)$s$を$0 \leqq s \leqq \sqrt{2}$を満たす実数とする.直線$y = x$と直線$y = -x+ \sqrt{2}s$の交点をPとする.直線$y = -x+\sqrt{2}s$と曲線$y =-x^2 +2x$の交点で$x$座標が1以下である点をQとし,Qの$x$座標を$t$とする.このとき,点Pと点Qの距離および$s$を,$t$を用いて表しなさい.
(2)直線$y = x$と曲線$y =-x^2 +2x$で囲まれた図形を直線$y = x$のまわりに回転させてできる立体の体積を求めなさい.
公立はこだて未来大学 公立 公立はこだて未来大学 2010年 第5問
座標平面上の直線$y=x$を$\ell$とし,2点A$(1,\ 0)$,B$(2,\ 0)$を考える.直線$\ell$上を動く点をP$(p,\ p)$とする.また,$\overline{\text{PQ}}$は点Pと点Qの間の距離を表すとする.このとき,以下の問いに答えよ.

(1)直線$\ell$上のすべての点Pに対して,$\overline{\text{PA}}=\overline{\text{PC}}$となるような$y$軸上の動かない点Cの座標を求めよ.
(2)$\overline{\text{PA}}+\overline{\text{PB}}$が最小となるような点Pの座標を求めよ.
(3)$a$は実数とする.直線$\ell$上のすべての点Pに対して,$a \cdot \overline{\text{PA}}^2+(1-a) \cdot \overline{\text{PB}}^2>0$となるような$a$の値の範囲を求めよ.
会津大学 公立 会津大学 2010年 第4問
座標平面上を動く点$\mathrm{P}$が,はじめ原点$\mathrm{O}$にある.コインを投げて表が出たときには$\mathrm{P}$は$x$軸の正の向きに$1$進み,裏が出たときには$\mathrm{P}$は$y$軸の正の向きに$1$進むとする.以下の問いに答えよ.

(1)コインを2回投げた結果,$\mathrm{P}$が$(1,\ 1)$にある確率を求めよ.
(2)コインを4回投げた結果,$\mathrm{P}$が$(2,\ 2)$にある確率を求めよ.
(3)コインを3回投げた後の2点$\mathrm{O},\ \mathrm{P}$間の距離$\mathrm{OP}$の期待値を求めよ.
(4)コインを7回投げた結果,距離$\mathrm{OP}=5$となる確率を求めよ.
スポンサーリンク

「距離」とは・・・

 まだこのタグの説明は執筆されていません。