タグ「距離」の検索結果

17ページ目:全233問中161問~170問を表示)
西南学院大学 私立 西南学院大学 2012年 第1問
$2$次関数のグラフ$C_1:y=2x^2+2x$について,以下の問に答えよ.

(1)$C_2:y=2x^2-10x+17$のグラフは$C_1$を$x$軸の正の方向に$[ア]$,$y$軸の正の方向に$[イ]$だけ平行移動したものである.
(2)$C_3$のグラフは$C_1$を平行移動したものである.$C_3$の頂点$\mathrm{A}$は,単位円の上にある.$C_1$の頂点と$\mathrm{A}$の距離が最小になるとき,
$C_3:y=[ウ]x^2+[エ] \sqrt{[オ]}x+\frac{[カ]-\sqrt{[キ]}}{[ク]}$である.
上智大学 私立 上智大学 2012年 第3問
一辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.底面$\mathrm{ABC}$の内接円の半径を$r$とおき,頂点$\mathrm{O}$を通り底面$\mathrm{ABC}$に垂直な直線からの距離が$r$以下である点全体からなる円柱を$T$とする.

(1)$\displaystyle r=\frac{\sqrt{[ネ]}}{[ノ]}$である.
(2)正四面体$\mathrm{OABC}$の高さは$\displaystyle \frac{\sqrt{[ハ]}}{[ヒ]}$である.
(3)辺$\mathrm{AB}$の中点と頂点$\mathrm{O}$とを結ぶ線分上に点$\mathrm{P}$をとり,$x=\mathrm{OP}$とおく.$\mathrm{P}$を通り底面$\mathrm{ABC}$に平行な平面による側面$\mathrm{OAB}$の切り口を$L$とする.
$L$が$T$に含まれるような$x$の最大値を$x_1$とすると
\[ x_1=\frac{\sqrt{[フ]}}{[ヘ]} \]
である.
$\displaystyle x_1 \leqq x \leqq \frac{\sqrt{3}}{2}$のとき,$L$と$T$の共通部分の長さは
\[ \frac{[ホ]}{[マ]} \sqrt{\frac{[ミ]}{[ム]}-x^2} \]
である.
正四面体$\mathrm{OABC}$の表面で$T$に含まれる部分の面積は
\[ \frac{\pi}{[メ]} \]
である.
金沢工業大学 私立 金沢工業大学 2012年 第1問
座標平面上において,原点$\mathrm{O}$と点$(6,\ 0)$からの距離の和が$10$である楕円を考える.

(1)この楕円の方程式は$\displaystyle \frac{(x-[ア])^2}{[イウ]}+\frac{y^2}{[エオ]}=1$である.

(2)この楕円と$x$軸,$y$軸との$4$個の交点を頂点とする四角形の面積は$[カキ]$である.
東京理科大学 私立 東京理科大学 2012年 第4問
平面上で点$\mathrm{O}$を中心とする半径$2$の円の内側に$\mathrm{OP}=1$となる点$\mathrm{P}$をとる.点$\mathrm{P}$で垂直に交わる$2$直線と円との交点を反時計回りの順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.

(1)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$\displaystyle \frac{3}{5}$のとき,四角形$\mathrm{ABCD}$の面積は
\[ \frac{[ア][イ]}{[ウ][エ]} \sqrt{[オ][カ]} \]
である.
(2)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$h$のとき,四角形$\mathrm{ABCD}$の面積を$S$とおくと,
\[ S^2=-[キ]h^4+[ク]h^2+[ケ][コ] \]
であり,$S$の最大値は$[サ]$,最小値は$[シ] \sqrt{[ス]}$である.
(3)三角形$\mathrm{ABP}$の面積を$S_1$,三角形$\mathrm{CDP}$の面積を$S_2$とおくと,
\[ S_1 \cdot S_2=\frac{[セ]}{[ソ]} \]
が成り立ち,$S_1+S_2$の最小値は$[タ]$であり,最大値は$[チ]$である.
日本女子大学 私立 日本女子大学 2012年 第3問
点$\mathrm{H}$を中心,線分$\mathrm{BC}$を直径とする円を底面とし,点$\mathrm{O}$を頂点とする円錐を考える.ただし,線分$\mathrm{OH}$は底面に対して垂直であるとする.右側の図は円錐の表面の展開図の底面以外の部分である.左側の図のように底面に平行な平面で円錐を切断する.この切断面の円と母線$\mathrm{OB}$との交点を$\mathrm{A}$,母線$\mathrm{OC}$との交点を$\mathrm{D}$,直線$\mathrm{OH}$との交点を$\mathrm{G}$とする.さらに,線分$\mathrm{AB}$上に点$\mathrm{E}$をとる.左側の図で線分の長さが$\mathrm{AD}=2$,$\mathrm{BC}=8$,$\mathrm{GH}=6 \sqrt{2}$,$\mathrm{AE}=3$のとき,以下の問いに答えよ.

(1)線分$\mathrm{AB}$の長さを求めよ.
(2)線分$\mathrm{OA}$の長さと,この展開図の扇形の中心角$\theta$の大きさを求めよ.
(3)円錐の表面上で,底面を横切らずに,点$\mathrm{B}$から母線$\mathrm{OC}$上の点を経て点$\mathrm{E}$に至る最短距離を,この展開図を利用して求めよ.
(4)母線$\mathrm{OC}$と$(3)$の最短距離を与える線の交点を$\mathrm{P}$とする.線分$\mathrm{CP}$の長さを求めよ.
(図は省略)
中部大学 私立 中部大学 2012年 第2問
沖合から湾に面した海岸に向かって直線的にモーターボートを走らせている.モーターボートの速度は一定で時速$36 \; \mathrm{km}$である.モーターボートの進行方向の右前方に,湾から突き出した岬があり灯台が立っている.モーターボートの進行方向から灯台に向かって測った角度が$\theta (0^\circ<\theta<45^\circ)$である地点を$\mathrm{A}$とする.

(1)$\mathrm{A}$点から$11$分$40$秒後に角度が$90^\circ-\theta$である地点$\mathrm{B}$を通過した.$\mathrm{A}$と$\mathrm{B}$の距離を求めよ.
(2)モーターボートがさらに進んで,角度が$90^\circ$となる地点$\mathrm{C}$に到達した.$\mathrm{A}$から$\mathrm{C}$までかかった時間は$26$分$40$秒であった.灯台と$\mathrm{C}$点までの距離を求めよ.
(3)灯台と$\mathrm{A}$点の距離を求めよ.
日本福祉大学 私立 日本福祉大学 2012年 第2問
$2$直線$x+y-3=0$,$3x-y+7=0$の交点と直線$4x-3y+6=0$との距離を求めよ.
福岡大学 私立 福岡大学 2012年 第3問
$a>0$とし,放物線$C:y=x^2-ax$と$x$軸との共有点で,原点$\mathrm{O}$でない方の共有点を$\mathrm{P}$とする.また,$m>0$とし,直線$\ell:y=mx$と放物線$C$との共有点で,原点$\mathrm{O}$でない方の交点を$\mathrm{Q}$とするとき,次の問いに答えよ.

(1)放物線$C$上の点$\mathrm{R}$における$C$の接線が直線$\ell$と平行であるとする.そのとき点$\mathrm{R}$と直線$\ell$との距離$d$を$a$と$m$を用いて表せ.
(2)$m=a$のとき,放物線$C$と$x$軸とで囲まれる部分の面積$S$は,三角形$\mathrm{ORQ}$の面積の何倍になるか求めよ.
福岡大学 私立 福岡大学 2012年 第3問
曲線$y=x^2-1$上を動く点$\mathrm{P}$と,直線$y=x-3$上を動く点$\mathrm{Q}$との距離が最小となるときの点$\mathrm{Q}$の座標は$[ ]$であり,このときの距離は$[ ]$である.
福岡大学 私立 福岡大学 2012年 第4問
$0<k<2$とする.曲線$C:y=x^2$上を動く点$\mathrm{P}$と,直線$y=2k(x-1)$上を動く点$\mathrm{Q}$との距離が最小となるとき,点$\mathrm{P}$の座標を$k$の式で表すと$[ ]$である.このときの直線$\mathrm{PQ}$と曲線$C$とで囲まれる部分の面積が最小になる$k$の値を求めると,$k=[ ]$である.
スポンサーリンク

「距離」とは・・・

 まだこのタグの説明は執筆されていません。