タグ「距離」の検索結果

16ページ目:全233問中151問~160問を表示)
三重大学 国立 三重大学 2012年 第2問
座標平面上で$y=x+1$で表される直線を$\ell$とする.また,4点A$(-1,\ 1)$,B$(0,\ -2)$,C$(3,\ 1)$,D$(1,\ 3)$をとる.以下の問いに答えよ.

(1)領域$R_1=\{ (x,\ y) \;|\; y>x+1 \}$と$R_2=\{ (x,\ y) \;|\; y \leqq x+1 \}$を考える.4点A,B,C,Dはそれぞれ,領域$R_1,\ R_2$のどちらにあるか答えよ.
(2)$k$を定数とし,直線$y=x+k$上に点E$(x,\ x+k)$をとる.Eと直線$\ell$の距離が$\sqrt{2}$となる$k$の値をすべて求めよ.
(3)四角形ABCDの周または内部で,直線$\ell$との距離が$\sqrt{2}$以下となる点の範囲を図示せよ.
(4)点P$(x,\ y)$が(3)で求めた範囲を動くとき,$2x+y$がとる値の最小値と最大値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第1問
座標平面上の点を,原点のまわりに角$\theta$だけ回転移動させる一次変換を表す$2$行$2$列の行列を$A$とする.以下の問いに答えよ.

(1)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって変換された点を点$\mathrm{P}_1$とする.$2$点$\mathrm{P}_0$,$\mathrm{P}_1$の間の長さを求めよ.
(2)$A^n=E$となる条件を示せ.ただし,$n$は$2$以上の整数,$0 \leqq \theta \leqq \pi$,$E$は単位行列とする.
(3)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって$l$回変換された点を点$\mathrm{P}_l$とする.点$\mathrm{P}_0$が$A$によって$n$回変換されると,原点の周りを$1$周して元の点$\mathrm{P}_0$に戻るとする.$n$個の点$\mathrm{P}_0$,$\mathrm{P}_1$,$\cdots$,$\mathrm{P}_{n-1}$で囲まれた$n$角形の面積$S_n$を求めよ.また,$\displaystyle \lim_{x \to 0}\frac{\sin x}{x}=1$を用いて,$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(4)座標平面上の点を,原点からの方向を変えずに距離を$k$倍する一次変換を表す$2$行$2$列の行列を$B$とする.座標平面上の点$\mathrm{Q}_{i-1}$が一次変換$AB$によって点$\mathrm{Q}_i$に移るとする.点$\mathrm{Q}_0$を$(c_0,\ d_0)$とするとき,$2$点$\mathrm{Q}_{i-1}$,$\mathrm{Q}_i$の間の長さ$m_i$を$k,\ \theta,\ c_0,\ d_0$を用いて表せ.
早稲田大学 私立 早稲田大学 2012年 第4問
関数
\[ f(x) = \log(1+\sqrt{1-x^2}) - \sqrt{1-x^2} - \log x \quad (0<x<1) \]
について,つぎの問に答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$y=f(x)$のグラフの概形を描け.
(3)曲線$y=f(x)$上を動く点を$\mathrm{P}$とする.点$\mathrm{Q}$は,曲線$y=f(x)$の$\mathrm{P}$における接線上にあり,$\mathrm{P}$との距離が$1$で,その$x$座標が$\mathrm{P}$の$x$座標より小さいものとする.$\mathrm{Q}$の軌跡を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
半径$1$の球が平面の上に接している.平面との接点を$\mathrm{O}$とし,$\mathrm{O}$を球の南極点とみなしたときの球の北極点を$\mathrm{N}$とする.平面上に点$\mathrm{A}$を$\mathrm{OA}=3$となるようにとる.また点$\mathrm{B}$を$\mathrm{OB}=4$であり,直線$\mathrm{OA}$と直線$\mathrm{OB}$が直交するようにとる.\\
\quad 点$\mathrm{N}$と平面上の点$\mathrm{P}$を結ぶ直線が球面と交わる$2$点の内,$\mathrm{N}$と異なる点を$\mathrm{P}^{\prime}$とする.このとき$\mathrm{N}$と$\mathrm{A}^{\prime}$,$\mathrm{B}^{\prime}$の距離はそれぞれ
\[ \mathrm{NA}^{\prime}= \frac{[$1$][$2$]}{\sqrt{[$3$][$4$]}},\quad \text{NB}^{\prime}=\frac{[$5$][$6$]}{\sqrt{[$7$][$8$]}} \]
である.点$\mathrm{P}$が直線$\mathrm{AB}$上を動くとき,$\mathrm{P}^{\prime}$は直径
\[ \frac{[$9$][$10$]}{\sqrt{[$11$][$12$]}} \]
の円を動く.
明治大学 私立 明治大学 2012年 第2問
次の$[ ]$に当てはまる$0$~$9$の数字を解答欄に書け.

座標平面上にある$2$点$\mathrm{P}(2t,\ 2t^3)$,$\mathrm{Q}(-4,\ 4t^2-8)$が,$-2 \leqq t \leqq 2$の範囲で動く.$\ell:y=x+b$とし,$\mathrm{P}$と$\ell$の距離を$\alpha$,$\mathrm{Q}$と$\ell$の距離を$\beta$とする.$\mathrm{P}$は,$\ell$より上側にあり,$\mathrm{Q}$は,$\ell$より下側にあるとする.$\mathrm{P}$,$\mathrm{Q}$,$\ell$の位置関係から$b$の範囲は,
$[ア]t^2 - [イ] < b < [ウ] t^3 - [エ]t$
となる.従って,$t$の範囲は,
$-[オ] < t < [カ]$
でなければならない.

$\displaystyle \alpha = \frac{1}{\sqrt{2}} |[キ]t^3 - [ク]t - b|,$
$\displaystyle \beta = \frac{1}{\sqrt{2}} |[ケ]t^2 - [コ] - b|$

だから,$\alpha = \beta$とすると,$b = (t+[サ])(t^2 - [シ])$である.
従って,$\displaystyle \alpha = \beta = \frac{1}{\sqrt{2}} |(t-[ス])(t^2-[セ])|$となり,
この値が,最大となるのは,$t=\frac{[ソ]-\sqrt{[タ]}}{[チ]}$のときで,そのときの値は
\[ \alpha = \frac{[ツ][テ]\sqrt{[ト]}+[ナ]\sqrt{[ニ][ヌ]}}{[ネ][ノ]} \]
である.
上智大学 私立 上智大学 2012年 第2問
直線$y=x-1$上の点$\mathrm{A}(a,\ a-1)$を通り,放物線$y=x^2$に接する直線を,$\ell,\ m$とする.ただし,$\ell$の方が$m$よりも傾きが大きいものとする.

(1)直線$\ell$の傾きを$a$で表すと
\[ [キ]\left( a+\sqrt{a^2+[ク]a+[ケ]} \right) \]
である.
(2)直線$\ell,\ m$と放物線$y=x^2$との接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする,線分$\mathrm{PQ}$と放物線$y=x^2$で囲まれた部分の面積$S$を$a$で表すと,
\[ S= \frac{[コ]}{[サ]}\left( a^2 +[シ]a+[ス] \right)^{\frac{3}{2}} \]
であり,$\displaystyle a=\frac{[セ]}{[ソ]}$のとき,$S$は最小値$\displaystyle \frac{\sqrt{[タ]}}{[チ]}$をとる.
(3)放物線$y=x^2$上の点で直線$y=x-1$との距離が最小であるのは$\displaystyle\left( \frac{[ツ]}{[テ]},\ \frac{[ト]}{[ナ]} \right)$で,その距離は$\displaystyle\frac{[ニ]}{[ヌ]}\sqrt{[ネ]}$である.
北海学園大学 私立 北海学園大学 2012年 第2問
次の問いに答えよ.

(1)$3$次関数$f(x)=ax^3+bx^2-5$の導関数$f^\prime(x)$が,$f^\prime(1)=1$と$f^\prime(2)=20$を満たすとき,定数$a$と$b$の値をそれぞれ求めよ.
(2)$a$は正の実数で,$b=32a^3$とする.$x=\log_2b$,$y=\log_2a$とおくとき,$y$を$x$を用いて表せ.
(3)座標平面上の$2$点$\mathrm{A}(1,\ 4)$,$\mathrm{B}(-1,\ 0)$からの距離の$2$乗の和$\mathrm{AP}^2+\mathrm{BP}^2$が$18$である点$\mathrm{P}$の軌跡を求めよ.
東北学院大学 私立 東北学院大学 2012年 第4問
円$\mathrm{O}:x^2+y^2=25$の上の$2$点$\mathrm{A}(5,\ 0)$,$\mathrm{B}(-3,\ 4)$をとる.次の問いに答えよ.

(1)線分$\mathrm{AB}$を$1:t (t>0)$に外分する点を$\mathrm{C}$とするとき,$\mathrm{C}$の座標を$t$を用いて表せ.
(2)点$\mathrm{B}$における円$\mathrm{O}$の接線と点$\mathrm{C}$との距離が$12$であるとき,$t$の値を求めよ.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$3$つの行列$A=\left( \begin{array}{cc}
5 & 3 \\
2 & 1
\end{array} \right)$,$B=\left( \begin{array}{rr}
1 & -3 \\
-2 & 5
\end{array} \right)$,$C=\left( \begin{array}{rr}
2 & -3 \\
-4 & 5
\end{array} \right)$がある.$A$の逆行列$A^{-1}$を求めると,$A^{-1}=[ア]$である.$B^2A^3CA$を求めると,$B^2A^3CA=[イ]$である.
(2)$k>1$とする.$2$次方程式$kx^2+(1-2k)x-2=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-2(k+1)x+4k=0$の解の$1$つは$\beta$であり,もう$1$つの解を$\gamma$とする.このとき,$\beta$を求めると$\beta=[ウ]$である.さらに,$\beta-\alpha=\gamma-\beta$が成り立つとき,$k$の値を求めると$k=[エ]$である.
(3)$y=e^x+e^{-x}$とする.$y=3$のとき,$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}$の値は$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}=[オ]$である.また,$y=4$のとき,$x=[カ]$である.
(4)原点$\mathrm{O}$からの距離と点$\mathrm{A}(1,\ 1)$からの距離の比が$\sqrt{2}:1$である点$\mathrm{P}(x,\ y)$の軌跡は方程式$[キ]$で与えられる.この図形上の点$\mathrm{Q}(s,\ t)$における接線の傾きが$2$であるとき,$\mathrm{Q}$の座標は$(s,\ t)=[ク]$である.
(5)区別できない$9$個の球を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$4$つの箱のいずれかに入れる.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$に入れた球の個数をそれぞれ$a,\ b,\ c,\ d$とし,$X=1000a+100b+10c+d$とする.$X$のとりうる値を小さい順に並べたときに$31$番目にくる値を求めると$[ケ]$であり,$X$が$4$桁の数となる球の入れ方は$[コ]$通りある.
南山大学 私立 南山大学 2012年 第2問
座標空間に$3$つの点$\mathrm{A}(4,\ 5,\ 4)$,$\mathrm{B}(6,\ 2,\ 2)$,$\mathrm{C}(2,\ 1,\ 3)$がある.

(1)$3$つの内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$,$\overrightarrow{\mathrm{CA}} \cdot \overrightarrow{\mathrm{CB}}$を求めよ.
(2)$\triangle \mathrm{ABC}$は鋭角三角形,直角三角形,鈍角三角形のいずれになるか,(1)の結果を用いて示せ.
(3)点$\mathrm{P}(a,\ b,\ 0)$から,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$までの距離がそれぞれ$\sqrt{18}$,$\sqrt{17}$,$\sqrt{19}$であるとき,$a,\ b$の値を求めよ.
スポンサーリンク

「距離」とは・・・

 まだこのタグの説明は執筆されていません。