タグ「距離」の検索結果

14ページ目:全233問中131問~140問を表示)
九州歯科大学 公立 九州歯科大学 2013年 第1問
次の問いに答えよ.

(1)頂点間の距離が$24$であり,焦点が$(20,\ 0)$と$(-20,\ 0)$である双曲線の方程式を求めよ.
(2)初項を$a_1=4$とする数列$\{a_n\}$と初項を$b_1=1$とする数列$\{b_n\}$に対して,$c_n=\sqrt{a_nb_n}$,$\displaystyle d_n=\sqrt{\displaystyle\frac{a_n}{b_n}}$とおく.ただし,$a_n>0$,$b_n>0$とする.数列$\{c_n\}$が公差$2$の等差数列となり,数列$\{d_n\}$が公比$3$の等比数列となるとき,$a_5$と$b_5$の値を求めよ.
(3)関数$f(x)=Ax^5+Bx^4+Cx^3+Dx^2+Ex+F$が
\[ f(-x)=-f(x),\quad \lim_{x \to \infty}\frac{f(x)}{x^3}=6,\quad \int_0^1 f(x) \, dx=\frac{1}{2} \]
をみたすとき,定数$A,\ B,\ C,\ D,\ E,\ F$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第2問
逆行列をもつ行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$によって表される$1$次変換を考える.以下の問いに答えよ.

(1)この変換によって$xy$平面上の任意の$2$点$\mathrm{P}(x_1,\ y_1)$および$\mathrm{Q}(x_2,\ y_2)$がそれぞれ$\mathrm{P}^\prime ({x_1}^\prime,\ {y_1}^\prime)$および$\mathrm{Q}^\prime ({x_2}^\prime,\ {y_2}^\prime)$に移されるとき,$2$点間の距離が変換によって変化しない,つまり,$|\overrightarrow{\mathrm{PQ}}|^2=|\overrightarrow{\mathrm{P}^\prime \mathrm{Q}^\prime}|^2$であるための必要十分条件は,
\[ A^\mathrm{T}A=E \qquad \cdots\cdots (*) \]
であることを示せ.ただし,$A^\mathrm{T}$は$A$の行と列を入れ替えた行列要素をもつ行列,すなわち,
\[ A^\mathrm{T}=\left( \begin{array}{cc}
a & c \\
b & d
\end{array} \right) \]
である.また,$E$は単位行列である.
(2)原点のまわりの回転移動および$x$軸に関する対称移動の$1$次変換を,それぞれ,$f$および$g$とする.これらの$1$次変換を表す行列は,それぞれ,上の条件$(*)$を満たすことを確かめよ.
(3)$(2)$で考えた$1$次変換$f$および$g$を表す行列をそれぞれ$F$および$G$とし,$A=FGF^{-1}$で定義される行列$A$によって表される$1$次変換を考える.この変換によって直線$y=mx$上の任意の点がそれ自身に移されるとき,$A$を実数$m$を用いて表せ.ただし,$F^{-1}$は$F$の逆行列を表す.
(4)$(1)$で考えた点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$の座標を用いて,$S=x_1y_2-y_1x_2$および$S^{\prime}={x_1}^\prime {y_2}^\prime-{y_1}^\prime {x_2}^\prime$を定義する.$\mathrm{P}$,$\mathrm{Q}$から$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$への変換を表す行列が$(3)$で求めた$A$で与えられるとき,$S$と$S^\prime$の関係式を求めよ.
札幌医科大学 公立 札幌医科大学 2013年 第1問
座標平面上の点$\mathrm{A}(1,\ 0)$と曲線$C:y=x \sqrt{x}$を考える(ただし$x \geqq 0$とする).曲線$C$上の点のうち,点$\mathrm{A}$までの距離が最小となるような点を$\mathrm{P}$とし,点$\mathrm{P}$における曲線$C$の接線と$x$軸との交点を$\mathrm{Q}$とする.

(1)点$\mathrm{P}$の$x$座標を求めよ.
(2)点$\mathrm{Q}$の$x$座標を求めよ.
(3)曲線$C$と$x$軸および線分$\mathrm{PQ}$で囲まれた図形を$x$軸のまわりに$1$回転させた回転体の体積を$V_1$とする.また,曲線$C$と$x$軸および線分$\mathrm{AP}$で囲まれた図形を$x$軸のまわりに$1$回転させた回転体の体積を$V_2$とする.このとき$\displaystyle \frac{V_2}{V_1}$の値を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2013年 第8問
$a$は実数とする.$xy$平面上の円$x^2-2ax+y^2-4y+a^2-1=0$があり,直線$3x+ay=0$と交わり,その交点の間の距離が$2$である.このときの$a$の値を求めよ.
福島県立医科大学 公立 福島県立医科大学 2013年 第1問
以下の各問いに答えよ.

(1)座標平面上の直線$x+2y=6$上にあって,点$(2,\ -3)$との距離が最小になる点の座標を求めよ.
(2)座標平面上の曲線$C:x^2+xy+y^2=3$について,以下の問いに答えよ.

(i) 原点のまわりの${45}^\circ$の回転移動によって,$C$上の各点が移る曲線の方程式を求めよ.
(ii) 曲線$C$で囲まれた図形のうち,$y \geqq 0$の領域に含まれる部分の面積を求めよ.

(3)座標平面上において,曲線$C_1:y=x \log x (x \geqq 1)$と放物線$C_2:y=ax^2$がある点$\mathrm{P}$を共有し,$\mathrm{P}$において共通の接線$\ell$を持つものとする.

(i) $a$の値を求めよ.
(ii) $C_1$,$C_2$および$x$軸によって囲まれた図形の面積を$S_1$とし,$C_1$,$\ell$および$x$軸によって囲まれた図形の面積を$S_2$とする.$S_1,\ S_2$の値を求めよ.

(4)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$と$\angle \mathrm{B}$の大きさをそれぞれ$A$,$B$で表し,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$で表す.$\displaystyle \tan \theta=\frac{3}{4}$になる$\displaystyle \theta \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$について,$\displaystyle \frac{a}{c} \cos (B-\theta)+\frac{b}{c} \cos (A+\theta)$の値を求めよ.
(5)$n$は自然数とする.導関数の定義にしたがって,関数$f(x)=x^n$の導関数を求めよ.
(6)$n$は$2$以上の自然数とする.$\displaystyle \frac{1}{2^n}$は,小数第$(n-1)$位が$2$,小数第$n$位が$5$である小数第$n$位までの有限小数で表わされることを示せ.
九州大学 国立 九州大学 2012年 第2問
関数$f(x) = x^3+3x^2+x-1$を考える.曲線$C:y=f(x)$について,以下の問いに答えよ.

(1)$t \geqq 0$のとき,曲線$C$は傾きが$t$である接線を$2$本持つことを示せ.
(2)(1)において,傾きが$t$である$2$本の接線と曲線$C$との接点を,それぞれP$(p,\ f(p))$,Q$(q,\ f(q))$とする(ただし$p<q$).このとき,点Pと点Qは点A$(-1,\ 0)$に関して対称の位置にあることを示せ.
(3)$t \geqq 0$のとき,$2$点P,Qの間の距離の最小値を求めよ.また,最小値を与えるときのP,Qの$x$座標$p,\ q$もそれぞれ求めよ.
神戸大学 国立 神戸大学 2012年 第1問
座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$と直線$\ell$があり,$\mathrm{A}$と$\ell$の距離と$\mathrm{B}$と$\ell$の距離の和が$1$であるという.以下の問に答えよ.

(1)$\ell$は$y$軸と平行でないことを示せ.
(2)$\ell$が線分$\mathrm{AB}$と交わるとき,$\ell$の傾きを求めよ.
(3)$\ell$が線分$\mathrm{AB}$と交わらないとき,$\ell$と原点との距離を求めよ.
神戸大学 国立 神戸大学 2012年 第1問
座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$と直線$\ell$があり,$\mathrm{A}$と$\ell$の距離と$\mathrm{B}$と$\ell$の距離の和が$1$であるという.以下の問に答えよ.

(1)$\ell$は$y$軸と平行でないことを示せ.
(2)$\ell$が線分$\mathrm{AB}$と交わるとき,$\ell$の傾きを求めよ.
(3)$\ell$が線分$\mathrm{AB}$と交わらないとき,$\ell$と原点との距離を求めよ.
横浜国立大学 国立 横浜国立大学 2012年 第1問
$xy$平面上に$n$個の点P$_k(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots,\ n)$がある.
\[ a=\sum_{k=1}^n x_k^2, \quad b=\sum_{k=1}^n y_k^2, \quad c= \sum_{k=1}^n x_ky_k \]
とおく.さらに,P$_k$と直線$\ell: x\cos \theta + y\sin \theta = 0$の距離を$d_k$とし,
\[ L = \sum_{k=1}^n d_k^2 \]
とおく.次の問いに答えよ.

(1)$L$を$a,\ b,\ c,\ \theta$を用いて表せ.
(2)$\theta$が$0 \leqq \theta < \pi$の範囲を動くとき,$L$の最大値と最小値を$a,\ b,\ c$を用いて表せ.
(3)$a \neq b$または$c \neq 0$のとき,$L$を最大にする$\ell$を$\ell_1$,最小にする$\ell$を$\ell_2$とする.$\ell_1$と$\ell_2$は直交することを示せ.
千葉大学 国立 千葉大学 2012年 第9問
以下の問いに答えよ.

(1)関数$f(x)$は第2次導関数$f^{\prime\prime}(x)$が連続で,ある$a<b$に対して,$f^{\prime}(a)=f^{\prime}(b)=0$を満たしているものとする.このとき
\[ f(b)-f(a)=\int_a^b \left( \frac{a+b}{2}-x \right) f^{\prime\prime}(x) \, dx \]
が成り立つことを示せ.
(2)直線道路上における車の走行を考える.ある信号で停止していた車が,時刻0で発進後,距離$L$だけ離れた次の信号に時刻$T$で到達し再び停止した.この間にこの車の加速度の絶対値が$\displaystyle \frac{4L}{T^2}$以上である瞬間があることを示せ.
スポンサーリンク

「距離」とは・・・

 まだこのタグの説明は執筆されていません。