タグ「距離」の検索結果

12ページ目:全233問中111問~120問を表示)
筑波大学 国立 筑波大学 2013年 第6問
楕円$\displaystyle C:\frac{x^2}{16}+\frac{y^2}{9}=1$の,直線$y=mx$と平行な$2$接線を$\ell_1$,$\ell_1^\prime$とし,$\ell_1$,$\ell_1^\prime$に直交する$C$の$2$接線を$\ell_2$,$\ell_2^\prime$とする.

(1)$\ell_1$,$\ell_1^\prime$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_1^\prime$の距離$d_1$および$\ell_2$と$\ell_2^\prime$の距離$d_2$をそれぞれ$m$を用いて表せ.ただし,平行な$2$直線$\ell$,$\ell^\prime$の距離とは,$\ell$上の$1$点と直線$\ell^\prime$の距離である.
(3)$(d_1)^2+(d_2)^2$は$m$によらず一定であることを示せ.
(4)$\ell_1$,$\ell_1^\prime$,$\ell_2$,$\ell_2^\prime$で囲まれる長方形の面積$S$を$d_1$を用いて表せ.さらに$m$が変化するとき,$S$の最大値を求めよ.
宮崎大学 国立 宮崎大学 2013年 第2問
$0<r<1$を満たす実数$r$について,座標平面上に,$2$点$\mathrm{P}_1(1,\ 0)$と$\mathrm{P}_2(1,\ r)$がある.これらから点$\mathrm{P}_{n+1}(x_{n+1},\ y_{n+1}) \ (n=2,\ 3,\ 4,\ \cdots)$を次の規則に従って定める.

点$\mathrm{P}_{n-1}$から点$\mathrm{P}_n$に向かう方向を時計の針の回転と逆の向きに${90}^\circ$回転し,その方向に点$\mathrm{P}_n$から距離$r^n$だけ進んだ点を$\mathrm{P}_{n+1}$とする.

このとき,次の各問に答えよ.

(1)点$\mathrm{P}_4,\ \mathrm{P}_8$の座標を,$r$を用いて表せ.
(2)$\displaystyle x=\lim_{m \to \infty}x_{4m}$,$\displaystyle y=\lim_{m \to \infty}y_{4m}$とするとき,点$\mathrm{P}(x,\ y)$の座標を,$r$を用いて表せ.
(3)実数$r$が$0<r<1$の範囲を動くとき,$(2)$の点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
宮崎大学 国立 宮崎大学 2013年 第4問
$-1<x<1$で定義される関数$f(x)=2x+\sqrt{5-5x^2}$について,座標平面上の曲線$C:y=f(x)$を考える.このとき,次の各問に答えよ.

(1)曲線$C$は上に凸であることを示し,$f(x)$の最大値を求めよ.
(2)曲線$C$上の点のうち,原点$\mathrm{O}$との距離が最大となる点を$\mathrm{A}$,最小となる点を$\mathrm{B}$とするとき,$\mathrm{A}$,$\mathrm{B}$の座標をそれぞれ求めよ.
(3)(2)で求めた点$\mathrm{A}$,$\mathrm{B}$について,線分$\mathrm{OA}$,線分$\mathrm{OB}$,および曲線$C$で囲まれる部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2013年 第4問
$0<r<1$を満たす実数$r$について,座標平面上に,$2$点$\mathrm{P}_1(1,\ 0)$と$\mathrm{P}_2(1,\ r)$がある.これらから点$\mathrm{P}_{n+1}(x_{n+1},\ y_{n+1}) \ (n=2,\ 3,\ 4,\ \cdots)$を次の規則に従って定める.

点$\mathrm{P}_{n-1}$から点$\mathrm{P}_n$に向かう方向を時計の針の回転と逆の向きに${90}^\circ$回転し,その方向に点$\mathrm{P}_n$から距離$r^n$だけ進んだ点を$\mathrm{P}_{n+1}$とする.

このとき,次の各問に答えよ.

(1)点$\mathrm{P}_4,\ \mathrm{P}_8$の座標を,$r$を用いて表せ.
(2)$\displaystyle x=\lim_{m \to \infty}x_{4m}$,$\displaystyle y=\lim_{m \to \infty}y_{4m}$とするとき,点$\mathrm{P}(x,\ y)$の座標を,$r$を用いて表せ.
(3)実数$r$が$0<r<1$の範囲を動くとき,$(2)$の点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
名城大学 私立 名城大学 2013年 第2問
図に示す一辺の長さが$10a (a>0)$の正方形$\mathrm{ABCD}$がある.辺上を車両が動くとき,次の問に答えよ.

(1)車両$\mathrm{Q}$が,一定の速度$a$で点$\mathrm{C}$を出発し,点$\mathrm{D}$を経由して点$\mathrm{A}$まで動くものとする.出発時刻を$t=0$とし,時間$t$経過後の点$\mathrm{A}$と車両$\mathrm{Q}$との直線距離を$t$と$a$を用いて表せ.
(2)$(1)$の条件下で,点$\mathrm{A}$と車両$\mathrm{Q}$との間で通信が行われる.通信に必要な電力$y$は,$2$点間の直線距離の$2$乗である.時間$t$経過後の電力$y$の変化を横軸に$t$,縦軸を$y$としたグラフに示せ.
(3)$(1)$の条件下で,車両$\mathrm{P}$が,一定の速度$a$で点$\mathrm{A}$を出発し,点$\mathrm{B}$を経由して点$\mathrm{C}$へ向かうものとする.出発時刻を$t=0$とし,時間$t$経過後の車両$\mathrm{P}$と車両$\mathrm{Q}$との直線距離の$2$乗$z$の変化を横軸に$t$,縦軸を$z$としたグラフに示せ.
(図は省略)
龍谷大学 私立 龍谷大学 2013年 第2問
座標平面上の点$(0,\ 1)$を通り$x$軸に平行な直線$\ell$と,点$\mathrm{A}(0,\ 4)$を考える.平面上の動点$\mathrm{P}(x,\ y)$が

$\mathrm{AP}:$(点$\mathrm{P}$と直線$\ell$の距離)$=2:1$

を満たすとき,点$\mathrm{P}$の軌跡を求め,図示しなさい.
金沢工業大学 私立 金沢工業大学 2013年 第3問
座標平面において次の$2$つの$2$次曲線を考える.

(1)原点$\mathrm{O}$と直線$x=-2$からの距離が等しい点の軌跡の方程式は
\[ y^2=[ア](x+[イ]) \]
である.
(2)$2$直線$\displaystyle y=\frac{3}{4}x-\frac{9}{4}$,$\displaystyle y=-\frac{3}{4}x+\frac{9}{4}$を漸近線にもち,$2$つの焦点の座標が$(-2,\ 0)$,$(8,\ 0)$である双曲線の方程式は
\[ \frac{(x-[ウ])^2}{[エ][オ]}-\frac{y^2}{[カ]}=1 \]
である.
(3)$(1)$と$(2)$の$2$つの曲線の共有点は$[キ]$個ある.
広島修道大学 私立 広島修道大学 2013年 第3問
関数$f(x)=2x^3-3x^2-11x+25$と直線$\ell:x-y+2=0$について,次の問いに答えよ.

(1)曲線$y=f(x)$上の点$\mathrm{A}(1,\ f(1))$と直線$\ell$の距離を求めよ.
(2)曲線$y=f(x)$上の点$\mathrm{P}(x,\ y)$と直線$\ell$の距離$d$を$x$を用いて表せ.
(3)曲線$y=f(x) (x \geqq 0)$を$C$とする.点$\mathrm{P}$が$C$上を動くとき,点$\mathrm{P}$と直線$\ell$の距離の最小値を求めよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第4問
$a,\ d$は$ad \neq 0$をみたす実数とする.$\mathrm{O}$を原点とする座標平面上において,行列$A=\left( \begin{array}{cc}
a & -1 \\
0 & d
\end{array} \right)$の表す$1$次変換(移動)を$f$とし,以下の$2$つの条件をみたす直線$\ell$がただ$1$つ存在するときを考える.

$(ⅰ)$ $\ell$は$\mathrm{O}$を通る.
$(ⅱ)$ $f$によって,$\ell$上の点はすべて$\ell$と垂直に交わるある直線$m$上に移される.

このとき,次の問いに答えよ.

(1)$a$と$d$の関係式を求めよ.
(2)$d>0$とする.$\ell$上に$\mathrm{O}$からの距離が$1$で$x$座標が正となる点$\mathrm{P}$をとり,$\mathrm{P}$の$f$による像を$\mathrm{Q}$とする.線分$\mathrm{OQ}$の長さを求めよ.また,直線$\mathrm{PQ}$と$y$軸が交わる点を$\mathrm{R}$とするとき,線分$\mathrm{OR}$の長さが最小となるように$a$と$d$の値を定めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2013年 第4問
$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$とする.時刻$t$における座標平面上の点$\mathrm{P}(x,\ y)$の位置が$x=\sin t$,$y=\sin 2t$で与えられている.

(1)原点$\mathrm{O}(0,\ 0)$から点$\mathrm{P}$が最も遠方にあるとき,$2$点$\mathrm{O}$,$\mathrm{P}$間の距離は$[ ]$であり,そのときの点$\mathrm{P}$の速度$\overrightarrow{v}$は$\overrightarrow{v}=[ ]$である.
(2)点$\mathrm{P}$の軌跡を$y=f(x)$と表すと,$f(x)=[ ]$である.ただし$x$の範囲は$[ ]$である.
(3)$(2)$で求めた軌跡と$x$軸とで囲まれてできる図形の面積は$[ ]$である.
スポンサーリンク

「距離」とは・・・

 まだこのタグの説明は執筆されていません。