タグ「距離」の検索結果

10ページ目:全233問中91問~100問を表示)
西南学院大学 私立 西南学院大学 2014年 第2問
$y=-x^2$で表される放物線を$G$とし,$y=-x+1$で表される直線を$\ell$とする.

$G$上の点と$\ell$上の点との距離が最小となるときの

$G$上の点の$x$座標は$\displaystyle \frac{[カ]}{[キ]}$となり,

$\ell$上の点の$x$座標は$\displaystyle \frac{[ク]}{[ケ]}$となる.
また,そのときの$G$上の点と$\ell$上の点との距離は$\displaystyle \frac{[コ] \sqrt{[サ]}}{[シ]}$となる.
西南学院大学 私立 西南学院大学 2014年 第4問
三角形$\mathrm{ABC}$に内接する円$\mathrm{O}$がある.円$\mathrm{O}$と$\mathrm{BC}$との接点を$\mathrm{H}$,円$\mathrm{O}$と$\mathrm{AC}$との接点を$\mathrm{I}$とする.$\mathrm{AB}=8$,$\mathrm{BC}=9$,$\mathrm{AC}=5$のとき,以下の問に答えよ.

(1)円$\mathrm{O}$の半径は,$\displaystyle \frac{[ノ] \sqrt{[ハヒ]}}{[フヘ]}$である.
(2)円$\mathrm{O}$の中心と$\mathrm{B}$との距離は,$\displaystyle \frac{[ホマ] \sqrt{[ミム]}}{[フヘ]}$である.
(3)$\mathrm{AI}=[メ]$である.
愛知県立大学 公立 愛知県立大学 2014年 第4問
座標平面上に点$\mathrm{P}(x,\ y)$,点$\mathrm{F}(1,\ 0)$,点$\mathrm{F}^\prime(-1,\ 0)$,および直線$\ell:x=2$がある.点$\mathrm{P}$から直線$\ell$に下ろした垂線を$\mathrm{PH}$とする.また,点$\mathrm{P}$と点$\mathrm{F}$,$\mathrm{F}^\prime$,$\mathrm{H}$との距離を,それぞれ$\mathrm{PF}$,$\mathrm{PF}^\prime$,$\mathrm{PH}$とし,原点$\mathrm{O}$と点$\mathrm{P}$の距離を$r$とする.比$\displaystyle \frac{\mathrm{PF}}{\mathrm{PH}}$の値が$\displaystyle \frac{1}{\sqrt{2}}$となる点$\mathrm{P}$の軌跡を$C$とするとき,以下の問いに答えよ.

(1)$C$の方程式を求めよ.
(2)$\mathrm{PF}+\mathrm{PF}^\prime$は定数となる.その値を求めよ.
(3)$\mathrm{PF} \cdot \mathrm{PF}^\prime$を$r$を用いて表せ.
(4)点$\mathrm{P}$は第$1$象限にあり,$\displaystyle \angle \mathrm{F}^\prime \mathrm{PF}=\frac{\pi}{3}$とする.このとき,$r$の値と点$\mathrm{P}$の座標を求めよ.また,$C$上の求めた点$\mathrm{P}$における接線の方程式を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2014年 第11問
点$\mathrm{P}$が楕円$x^2+4y^2=4$の上を動くとき,$\mathrm{P}$から定点$\displaystyle \mathrm{A}(a,\ 0) \left( 0<a<\frac{3}{2} \right)$への距離$L(p)$の最小値を求めよ.
会津大学 公立 会津大学 2014年 第1問
次の空欄をうめよ.

(1)次の積分を求めよ.ただし,積分定数は省略してもよい.

(i) $\displaystyle \int \frac{dx}{x(\log x)^2}=[イ]$

(ii) $\displaystyle \int_{6\pi}^{7\pi} x \sin x \, dx=[ロ]$

(iii) $\displaystyle \int_0^{\frac{\pi}{2}} \cos 2x \cos x \, dx=[ハ]$

(2)次の極限を求めよ.
\[ \lim_{n \to \infty} (\sqrt{n(n+3)}-n)=[ニ] \]
(3)$3^x=5^y=15^{6}$をみたす実数$x,\ y$について,$\displaystyle \frac{1}{x}+\frac{1}{y}=[ホ]$である.
(4)$2$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(2,\ 0)$からの距離の比が$1:2$である点$\mathrm{P}(x,\ y)$の軌跡を表す曲線の方程式は$[ヘ]$である.
(5)$2$つのベクトル$\overrightarrow{a}=(2,\ 3,\ 2)$,$\overrightarrow{b}=(1,\ 0,\ -2)$の両方に垂直で,大きさが$1$であるベクトルは$[ト]$と$[チ]$である.
三重県立看護大学 公立 三重県立看護大学 2014年 第1問
次の$(1)$から$(8)$の$[ ]$に適する答えを書きなさい.

(1)点$(2,\ 1)$から$3x-4y=5$までの距離は$[ ]$である.
(2)サイコロを$3$回ふったとき出た目を$a,\ b,\ c$とすると,$(a-b)(b-c)(c-a)=0$となるときの確率は$[ ]$である.
(3)数列$3,\ 5,\ 9,\ 17,\ 33,\ 65,\ \cdots$の第$n$項は$[ ]$となる.
(4)正の実数$x,\ y$が$x+y-2=0$を満たすとき,$xy$の値の取り得る範囲は$[ア]<xy \leqq [イ]$となる.
(5)$2x^3-x^2-5x-2=0$を解くと,$x=[ ],\ [ ],\ [ ]$となる.
(6)$\sqrt{11-\sqrt{96}}$の二重根号をはずし,簡単にすると$[ ]$となる.
(7)$2 \sin^2 x-\cos 2x-\cos^2 x=\sin^2 x$を解くと,$x=[ ],\ [ ]$となる.ただし,$0 \leqq x \leqq \pi$とする.
(8)$\log_3 x-3 \log_x 9=-1$を解くと,$x=[ ],\ [ ]$となる.ただし,$x>0,\ x \neq 1$とする.
東北大学 国立 東北大学 2013年 第6問
半径1の円を底面とする高さ$\displaystyle \frac{1}{\sqrt{2}}$の直円柱がある.底面の円の中心を$\mathrm{O}$とし,直径を1つ取り$\mathrm{AB}$とおく.$\mathrm{AB}$を含み底面と$45^\circ$の角度をなす平面でこの直円柱を2つの部分に分けるとき,体積の小さい方の部分を$V$とする.

(1)直径$\mathrm{AB}$と直交し,$\mathrm{O}$との距離が$t \ (0 \leqq t \leqq 1)$であるような平面で$V$を切ったときの断面積$S(t)$を求めよ.
(2)$V$の体積を求めよ.
埼玉大学 国立 埼玉大学 2013年 第4問
$xyz$空間における平面$y=0$上のグラフ$z=2-x^2,\ (0 \leqq x \leqq \sqrt{2})$を$z$軸の周りに回転して得られるものを平面$x=a$で切りとる.ただし$0 \leqq a \leqq \sqrt{2}$とする.そのとき切り口の平面に曲線$G$が現れた.$G$上の点$(x,\ y,\ z)$は,
\[ x=a,\quad z=2-a^2-y^2 \quad (-\sqrt{2-a^2} \leqq y \leqq \sqrt{2-a^2}) \]
をみたす.切り口の平面$x=a$上において点$(a,\ 0,\ 0)$と曲線$G$上の点の距離の最大値を$r(a)$とする.このとき下記の設問に答えよ.

(1)$0 \leqq a \leqq \sqrt{2}$に対して$r(a)$を求めよ.
(2)次の積分値を求めよ.
\[ \pi \int_1^{\sqrt{2}}(r(x))^2 \,dx \]
東北大学 国立 東北大学 2013年 第5問
2次の正方行列$A$を$A=\left( \begin{array}{cc}
-\displaystyle\frac{1}{\sqrt{2}} & -\displaystyle\frac{1}{\sqrt{2}} \\
\displaystyle\frac{1}{\sqrt{2}} & -\displaystyle\frac{1}{\sqrt{2}} \\
\end{array} \right)$で定める.$n=1,\ 2,\ 3,\ \cdots$に対して,点$\mathrm{P}_n(x_n,\ y_n)$を関係式
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)=A \left( \begin{array}{c}
x_{n-1} \\
y_{n-1}
\end{array} \right)+\left( \begin{array}{c}
1 \\
0
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.ただし,$x_0=1,\ y_0=0$とする.

(1)$A^4$を求めよ.
(2)$n=0,\ 1,\ 2,\ \cdots$に対して,
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)=(E-A^{n+1})(E-A)^{-1} \left( \begin{array}{c}
1 \\
0
\end{array} \right) \]
が成り立つことを示せ.ただし,$E$は2次の単位行列とする.
(3)原点$\mathrm{O}$から$\mathrm{P}_n$までの距離$\mathrm{OP}_n$が最大となる$n$を求めよ.
大阪大学 国立 大阪大学 2013年 第1問
$xy$平面において,点$(x_0,\ y_0)$と直線$ax+by+c=0$の距離は
\[ \frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} \]
である.これを証明せよ.
スポンサーリンク

「距離」とは・・・

 まだこのタグの説明は執筆されていません。