タグ「赤色」の検索結果

1ページ目:全14問中1問~10問を表示)
大阪市立大学 公立 大阪市立大学 2016年 第2問
さいころの$6$つの面の中から$2$面を選んで赤色に塗る.残った$4$面の中から$2$面を選んで黒色に塗る.最後に残った$2$面は白色に塗る.なお,色を塗っても,さいころの目は判別できるものとする.このとき次の問いに答えよ.

(1)上のような各面への色の塗り分け方は全部で何通りあるか.
(2)赤い面が向かい合うような,各面への色の塗り分け方は何通りあるか.
(3)赤い面が隣り合うような,各面への色の塗り分け方は何通りあるか.
(4)同じ色の面がすべて隣り合うような,各面への色の塗り分け方は何通りあるか.
(5)同じ色の面がすべて向かい合うような,各面への色の塗り分け方は何通りあるか.
センター試験 問題集 センター試験 2015年 第4問
同じ大きさの$5$枚の正方形の板を一列に並べて,図のような掲示板を作り,壁に固定する.赤色,緑色,青色のペンキを用いて,隣り合う正方形どうしが異なる色となるように,この掲示板を塗り分ける.ただし,塗り分ける際には,$3$色のペンキをすべて使わなければならないわけではなく,$2$色のペンキだけで塗り分けることがあってもよいものとする.
(図は省略)

(1)このような塗り方は,全部で$[アイ]$通りある.
(2)塗り方が左右対称となるのは,$[ウエ]$通りある.
(3)青色と緑色の$2$色だけで塗り分けるのは,$[オ]$通りある.
(4)赤色に塗られる正方形が$3$枚であるのは,$[カ]$通りある.
(5)赤色に塗られる正方形が$1$枚である場合について考える.
\begin{itemize}
どちらかの端の$1$枚が赤色に塗られるのは,$[キ]$通りある.
端以外の$1$枚が赤色に塗られるのは,$[クケ]$通りある.
\end{itemize}
よって,赤色に塗られる正方形が$1$枚であるのは,$[コサ]$通りある.
(6)赤色に塗られる正方形が$2$枚であるのは,$[シス]$通りある.
岡山理科大学 私立 岡山理科大学 2015年 第3問
\begin{mawarikomi}{35mm}{

(図は省略)
}
正方形の紙の片面を右図のように$5$つの区画に分ける.中央の区画は正方形であり,そのまわりの$4$つの区画はそれぞれ互いに合同である.それぞれの区画を赤緑青黄黒の$5$色のうち$1$色で塗るとき,次の問いに答えよ.ただし,隣り合う区画は異なる色で塗るものとし,回転して一致するものは同じ塗り方とする.

(1)中央の区画を赤色で塗るとする.そのまわりの$4$つの区画を緑青黄黒の$4$色をすべて用いて塗り分ける方法は何通りあるか.
(2)赤緑青黄黒の$5$色をすべて用いて塗り分ける方法は何通りあるか.
(3)赤緑青黄の$4$色のうちいくつかを用いて塗り分ける方法は何通りあるか.

\end{mawarikomi}
奈良女子大学 国立 奈良女子大学 2014年 第6問
$6$枚のカードに,$1$から$6$までの番号がつけられている.どのカードも一方の面が白色,もう一方の面が赤色である.はじめに,すべてのカードの白色の面を上にして番号順に並べる.次の操作をくり返し行う.

$1$個のさいころを投げる.出た目の数が$x$であるとき,
$x$の約数である番号のカードをすべて裏返す.

このとき,以下の問いに答えよ.

(1)$1$回目の操作の後で,番号$2$のカードの赤色の面が上になっている確率を求めよ.
(2)$3$回目の操作の後で,赤色の面が上になっているカードが$2$枚である確率を求めよ.
(3)$n$回目の操作の後で,すべてのカードの赤色の面が上になっているとする.このような$n$の最小値を求めよ.
三重大学 国立 三重大学 2014年 第3問
$\mathrm{X}$大学では,オープンキャンパスに$40$名の高校生が参加を申し込んだ.この$40$名の高校生のために,黒色$20$本,青色$10$本,赤色$10$本,計$40$本のボールペンを参加の記念として用意した.この$40$名の中の特定の$2$名$\mathrm{A}$,$\mathrm{B}$について,下の問いに答えよ.ただし,オープンキャンパスにはこの$40$名の高校生が参加するとする.また,高校生$1$名に必ず$1$本のボールペンが渡され,渡されるボールペンの色は無作為に決定される.

(1)$\mathrm{A}$,$\mathrm{B}$ともに黒色のボールペンを渡される確率を求めよ.
(2)$\mathrm{A}$,$\mathrm{B}$が同じ色のボールペンを渡される確率を求めよ.
三重大学 国立 三重大学 2014年 第3問
$\mathrm{X}$大学では,オープンキャンパスに$40$名の高校生が参加を申し込んだ.この$40$名の高校生のために,黒色$20$本,青色$10$本,赤色$10$本,計$40$本のボールペンを参加の記念として用意した.この$40$名の中の特定の$2$名$\mathrm{A}$,$\mathrm{B}$について,下の問いに答えよ.ただし,オープンキャンパスにはこの$40$名の高校生が参加するとする.また,高校生$1$名に必ず$1$本のボールペンが渡され,渡されるボールペンの色は無作為に決定される.

(1)$\mathrm{A}$,$\mathrm{B}$ともに黒色のボールペンを渡される確率を求めよ.
(2)$\mathrm{A}$,$\mathrm{B}$が同じ色のボールペンを渡される確率を求めよ.
三重大学 国立 三重大学 2014年 第3問
$\mathrm{X}$大学では,オープンキャンパスに$40$名の高校生が参加を申し込んだ.この$40$名の高校生のために,黒色$20$本,青色$10$本,赤色$10$本,計$40$本のボールペンを参加の記念として用意した.この$40$名の中の特定の$2$名$\mathrm{A}$,$\mathrm{B}$について,下の問いに答えよ.ただし,オープンキャンパスにはこの$40$名の高校生が参加するとする.また,高校生$1$名に必ず$1$本のボールペンが渡され,渡されるボールペンの色は無作為に決定される.

(1)$\mathrm{A}$,$\mathrm{B}$ともに黒色のボールペンを渡される確率を求めよ.
(2)$\mathrm{A}$,$\mathrm{B}$が同じ色のボールペンを渡される確率を求めよ.
三重大学 国立 三重大学 2014年 第3問
$\mathrm{X}$大学では,オープンキャンパスに$40$名の高校生が参加を申し込んだ.この$40$名の高校生のために,黒色$20$本,青色$10$本,赤色$10$本,計$40$本のボールペンを参加の記念として用意した.この$40$名の中の特定の$2$名$\mathrm{A}$,$\mathrm{B}$について,下の問いに答えよ.ただし,オープンキャンパスにはこの$40$名の高校生が参加するとする.また,高校生$1$名に必ず$1$本のボールペンが渡され,渡されるボールペンの色は無作為に決定される.

(1)$\mathrm{A}$,$\mathrm{B}$ともに黒色のボールペンを渡される確率を求めよ.
(2)$\mathrm{A}$,$\mathrm{B}$が同じ色のボールペンを渡される確率を求めよ.
九州産業大学 私立 九州産業大学 2014年 第1問
次の問いに答えよ.

(1)$\displaystyle \left( \frac{\sqrt{5}+1}{2} \right)^3+\left( \frac{\sqrt{5}-1}{2} \right)^3=[ア] \sqrt{[イ]}$である.
(2)関数$y=-3x^2+6x (0 \leqq x \leqq 3)$の最大値は$[ウ]$で,最小値は$[エオ]$である.
(3)$2$次方程式$x^2-3x+3=0$の解は$\displaystyle x=\frac{[カ] \pm \sqrt{[キ]}i}{[ク]}$である.
(4)$\displaystyle \sin \theta \cos \theta=\frac{1}{2} (0 \leqq \theta \leqq {90}^\circ)$のとき

(i) $\displaystyle \sin \theta+\cos \theta=\sqrt{[ケ]}$である.
(ii) $\displaystyle \sin^3 \theta+\cos^3 \theta=\frac{\sqrt{[コ]}}{[サ]}$である.

(5)正方形$\mathrm{ABCD}$の各辺に赤,青,黄,緑のいずれかの色を塗る.ただし,同じ色を$2$度以上使ってもよいものとする.

(i) 辺$\mathrm{AB}$と辺$\mathrm{BC}$が赤色になる塗り方は$[シス]$通りある.
(ii) $3$つの辺が赤色で,残りの$1$つの辺は赤色以外になる塗り方は$[セソ]$通りある.
(iii) 向かい合う辺は同じ色であるが,すべての辺が同じ色とはなっていない塗り方は$[タチ]$通りある.
西南学院大学 私立 西南学院大学 2014年 第2問
両面が赤色のカードが$3$枚,片方の面が赤,もう片方の面が青のカードが$3$枚,片方の面が赤,もう片方の面が黄色のカードが$4$枚ある.この$10$枚のカードを袋に入れ,無作為に$1$枚を取り出しテーブルの上に置いたとき,以下の問に答えよ.ただし,カードをテーブルの上に置いたとき,見えている面をカードの表とする.


(1)カードの表が赤である確率は,$\displaystyle \frac{[サシ]}{[スセ]}$である.

(2)カードの表が赤であるとき,裏も赤である確率は,$\displaystyle \frac{[ソ]}{[タチ]}$である.

(3)カードの表が赤であるとき,裏が黄色でない確率は,$\displaystyle \frac{[ツ]}{[テト]}$である.
スポンサーリンク

「赤色」とは・・・

 まだこのタグの説明は執筆されていません。