タグ「象限」の検索結果

10ページ目:全105問中91問~100問を表示)
津田塾大学 私立 津田塾大学 2011年 第4問
次の問いに答えよ.

(1)$t$に関する関数$\displaystyle x=\frac{e^t+e^{-t}}{2} (t \geqq 0)$のグラフをかけ.
(2)$\displaystyle x=\frac{e^t+e^{-t}}{2} (t \geqq 0)$のとき,$\sqrt{x^2-1}$を$t$を用いて表せ.
(3)$\mathrm{O}$を原点とし,点$\mathrm{P}(a,\ b)$を双曲線$x^2-y^2=1$上にある第$1$象限内の点とする.$\displaystyle a=\frac{e^s+e^{-s}}{2} (s>0)$のとき,線分$\mathrm{OP}$と双曲線$x^2-y^2=1$と$x$軸とで囲まれた部分の面積を,$s$を用いて表せ.
大阪市立大学 公立 大阪市立大学 2011年 第1問
$a$は実数で$0 < a < 1$とする.座標平面上の第$1$象限にある曲線$\displaystyle y =\frac{1}{x}$と$2$直線$y = x,\ y = ax$で囲まれる部分$P(a)$の面積を$S(a)$とする.次の問いに答えよ.

(1)$S(a)$を$a$を用いて表せ.
(2)$\displaystyle 2S(\frac{1}{e}) \leqq S(a) \leqq 2S(\frac{1}{e})+1$となる$a$の範囲を求めよ.
(3)$P(a)$を$x$軸の周りに回転して得られる回転体の体積$V(a)$と$\displaystyle \lim_{a \to 0} V(a)$を求めよ.
滋賀県立大学 公立 滋賀県立大学 2011年 第2問
$x$軸とのなす角が$\displaystyle 2\theta \ \left(0<\theta<\frac{\pi}{4} \right)$で原点Oを通る直線$\ell$と,$x$軸上の定点A$(a,\ 0) \ (a>0)$と$y$軸上の定点B$(0,\ b) \ (b>0)$がある.円$C_1$,円$C_2$は$\ell$と接し,かつ$C_1$は$x$軸とAで接し,$C_2$は$y$軸とBで接するものとする.$C_1$,$C_2$の中心をそれぞれP$_1$,P$_2$とする.ただし,P$_1$,P$_2$は第1象限の点である.

(1)$\triangle$OP$_1$P$_2$の面積は$\displaystyle S=\frac{ab}{\sin 2\theta + \cos 2\theta+1}$であることを示せ.
(2)$\theta$を変数としたとき,$S$の最小値を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2011年 第4問
座標平面において,原点を通り傾きが$\tan 2\theta$の直線を$\ell$で表す.ただし,$\theta$は$\displaystyle 0<\theta<\frac{\pi}{4}$を満たすとする.中心が第1象限に属し,直線$\ell$と$x$軸に接する半径1の円$C$を考える.さらに,円$C$と直線$\ell$および$x$軸に接し,中心が第1象限に属する2つの円のうち,面積が大きいものを$C^\prime$で表す.以下の問いに答えよ.

(1)円$C$の方程式を求めよ.
(2)円$C^\prime$の半径を,$\theta$の関数として表せ.
(3)円$C^\prime$の円周の長さが,円$C$の円周の長さの3倍になるように$\theta$の値を定めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2011年 第6問
座標平面上の2点A$(-2,\ 0)$,B$(2,\ 0)$を端点とする線分ABと楕円の上半分$x^2+4y^2=4,\ y \geqq 0$に4つの頂点がある台形ABCDについて,以下の問いに答えよ.ただし,点Cは第1象限,点Dは第2象限に属しているとする.

(1)点Cの$x$座標を$\displaystyle 2\cos \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とするとき,台形ABCDの面積を$\theta$を用いて表せ.
(2)台形ABCDの面積の最大値を求めよ.また,そのときの点Cの$x$座標を求めよ.
宮城大学 公立 宮城大学 2011年 第2問
次の空欄$[サ]$から$[ト]$にあてはまる数や式を書きなさい.

$x$-$y$平面上の$3$点$\mathrm{P}(-1,\ 0)$,$\mathrm{Q}(0,\ 1)$,$\mathrm{R}(2,\ 0)$を通る$2$次曲線$C$を考える.$C$が方程式
\[ y=ax^2+bx+c \quad (a,\ b,\ c \text{は定数}) \]
で与えられるとすると,$C$は点$\mathrm{Q}$を通るから$c=[サ]$である.また$C$は点$\mathrm{P}$を通るから$[シ]=0$であり,点$\mathrm{R}$を通るから$[ス]=0$である.これより,$a=[セ]$,$b=[ソ]$となる.
この$2$次曲線$C$の頂点の座標は$\displaystyle \left( [タ],\ [チ] \right)$である.また,第$1$象限において$C$と$x$軸と$y$軸が囲む面積$S$は,
\[ S=\int_{[テ]}^{[ツ]} (ax^2+bx+c) \, dx \]
で与えられるから,$S=[ト]$となる.
九州大学 国立 九州大学 2010年 第3問
$xy$平面上に曲線$\displaystyle y =\frac{1}{x^2}$を描き,この曲線の第1象限内の部分を$C_1$,第2象限内の部分を$C_2$と呼ぶ.$C_1$上の点P$_1 \displaystyle \left( a,\ \frac{1}{a^2} \right)$から$C_2$に向けて接線を引き,$C_2$との接点をQ$_1$とする.次に点Q$_1$から$C_1$に向けて接線を引き,$C_1$との接点をP$_2$とする.次に点P$_2$から$C_2$に向けて接線を引き,接点をQ$_2$とする.以下同様に続けて,C$_1$上の点列P$_n$と$C_2$上の点列Q$_n$を定める.このとき,次の問いに答えよ.

(1)点Q$_1$の座標を求めよ.
(2)三角形P$_1$Q$_1$P$_2$の面積$S_1$を求めよ.
(3)三角形P$_n$Q$_n$P$_{n+1} \ (n = 1,\ 2,\ 3,\ \cdots)$の面積$S_n$を求めよ.
(4)級数$\displaystyle \sum_{n=1}^{\infty} S_n$の和を求めよ.
熊本大学 国立 熊本大学 2010年 第4問
原点Oを中心として半径1の円の第1象限の部分$C$について考える.$C$上に3点A$\displaystyle \biggl( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \biggr)$,P$(1,\ 0)$,Q$(0,\ 1)$をとる.$s+t=1$を満たす$s,\ t \ (0<s<1,\ 0<t<1)$に対し,弧AQ上に点Xを2つのベクトル
\[ s^2\, \overrightarrow{\mathrm{OA}}-s\, \overrightarrow{\mathrm{OX}},\quad t\, \overrightarrow{\mathrm{OA}}-t^2\, \overrightarrow{\mathrm{OX}} \]
が垂直になるようにとる.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OX}}$のなす角を$\theta$とするとき,$\cos \theta$を$t$を用いて表せ.
(2)$\cos \theta$のとり得る値の範囲を求めよ.
(3)$\triangle$OAXの面積の最大値を求めよ.
福井大学 国立 福井大学 2010年 第3問
原点をOとする座標平面上,長方形ABCDが図のように頂点Aは$y$軸の正の部分に,頂点Bは$x$軸の正の部分に,頂点C,Dは第1象限内におかれている.$\text{AB}=2,\ \text{BC}=1$とし$\angle \text{OAB}=t$とおく.ただし,$\displaystyle 0<t<\frac{\pi}{2}$とする.このとき,以下の問いに答えよ.

(1)長方形ABCDの周で$y \leqq 1$にある部分の長さを$f(t)$とおく.$f(t)$を求めよ.
(2)$f(t)=3$が成り立つときの$\cos t,\ \sin t$の値を求めよ.
(3)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲を動くとき,$f(t)$の最小値とそのときの$t$の値を求めよ.

\setlength\unitlength{1truecm}

(図は省略)
宇都宮大学 国立 宇都宮大学 2010年 第6問
座標平面上に,点$(0,\ 1)$を中心とする半径$1$の円と点$\mathrm{P}(0,\ h) \ (0<h<2)$がある.点$\mathrm{P}$を通る直線$y=h$と円との交点で第$1$象限にあるものを$\mathrm{Q}$とする.曲線$C:y=\alpha x^2$は点$\mathrm{Q}$を通るとし,$y$軸と曲線$C$および線分$\mathrm{PQ}$で囲まれた部分を図形$\mathrm{A}$とする.次の問いに答えよ.

(1)$\alpha$を$h$を用いて表せ.
(2)図形$\mathrm{A}$の面積$S$を$h$の式で表し,$S$の最大値を求めよ.
(3)図形$\mathrm{A}$を$y$軸の周りに$1$回転してできる立体の体積$V$を$h$の式で表し,$V$の最大値を求めよ.
(4)$S,\ V$は,それぞれ(2),(3)で求めたものとする.$\displaystyle X=\frac{V}{2\pi S}$とおくとき,$X$の最大値を求めよ.
スポンサーリンク

「象限」とは・・・

 まだこのタグの説明は執筆されていません。