タグ「象限」の検索結果

1ページ目:全105問中1問~10問を表示)
筑波大学 国立 筑波大学 2016年 第2問
$xy$平面の直線$y=(\tan 2 \theta)x$を$\ell$とする.ただし$\displaystyle 0<\theta<\frac{\pi}{4}$とする.図で示すように,円$C_1$,$C_2$を以下の$(ⅰ)$~$\tokeishi$で定める.

(i) 円$C_1$は直線$\ell$および$x$軸の正の部分と接する.
(ii) 円$C_1$の中心は第$1$象限にあり,原点$\mathrm{O}$から中心までの距離$d_1$は$\sin 2\theta$である.
(iii) 円$C_2$は直線$\ell$,$x$軸の正の部分,および円$C_1$と接する.
\mon[$\tokeishi$] 円$C_2$の中心は第$1$象限にあり,原点$\mathrm{O}$から中心までの距離$d_2$は$d_1>d_2$を満たす.

円$C_1$と円$C_2$の共通接線のうち,$x$軸,直線$\ell$と異なる直線を$m$とし,直線$m$と直線$\ell$,$x$軸との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.

(1)円$C_1,\ C_2$の半径を$\sin \theta,\ \cos \theta$を用いて表せ.
(2)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{4}$の範囲を動くとき,線分$\mathrm{PQ}$の長さの最大値を求めよ.
(3)$(2)$の最大値を与える$\theta$について直線$m$の方程式を求めよ.
(図は省略)
徳島大学 国立 徳島大学 2016年 第1問
座標平面上の曲線$\displaystyle \frac{x^2}{4}+y^2=1 (y \geqq 0)$を$C$とする.実数$t>1$に対して,点$(0,\ t)$を通り第$1$象限の点$(a,\ b)$で曲線$C$に接する直線を$\ell$とする.

(1)$x$軸,$y$軸と$\ell$で囲まれた部分の面積を$S_1(t)$とする.$t$が$t>1$の範囲を動くとき,$S_1(t)$の最小値を求めよ.
(2)曲線$C$と直線$y=b$で囲まれた部分の面積を$S_2(t)$とする.$t$が$t>1$の範囲を動くとき,導関数$S_2^\prime(t)$の最大値を求めよ.
宮崎大学 国立 宮崎大学 2016年 第5問
$k>0$,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.座標平面上の原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1)$に対し,第一象限の点$\mathrm{P}$を,$\angle \mathrm{AOP}=\theta$を満たすように円$D:x^2+y^2=1$上にとり,直線$\mathrm{OP}$と直線$x=k \theta$との交点を$\mathrm{Q}$とする.$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で動かすときの点$\mathrm{Q}$の軌跡を曲線$y=f(x)$とし,関数$\displaystyle y=g(x)=\frac{f(x)}{x}$で定める曲線を$C$とする.このとき,次の各問に答えよ.

(1)$r(\theta)=\mathrm{OQ}$とするとき,$\displaystyle \lim_{\theta \to +0} r(\theta)$の値を求めよ.
(2)点$\mathrm{Q}$がつねに円$D$の内部にあるための$k$の条件を求めよ.
(3)関数$g(x)$の増減と凹凸を調べ,曲線$C$の概形をかけ.
(4)曲線$C$と$x$軸および$2$直線$\displaystyle x=\frac{\pi}{4}k$,$\displaystyle x=\frac{\pi}{3}k$とで囲まれた図形を$x$軸のまわりに$1$回転させてできる立体の体積を,$k$を用いて表せ.
九州工業大学 国立 九州工業大学 2016年 第3問
$a<0$,$b$を実数とする.楕円$C:x^2+4y^2=4$と直線$\ell:y=ax+b$が異なる$2$個の共有点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2) (x_1<x_2)$を持つとし,$\ell$に平行な直線$m$が第$1$象限の点$\mathrm{A}$において$C$と接しているとする.次に答えよ.

(1)$b$の値の範囲を$a$を用いて表せ.
(2)直線$m$の方程式を$a$を用いて表せ.
(3)$x_2-x_1$を$a,\ b$を用いて表せ.
(4)三角形$\mathrm{APQ}$の面積$S$を$a,\ b$を用いて表せ.
(5)$b$が$(1)$で求めた範囲を動くとき,$(4)$で求めた$S$の最大値を求めよ.
秋田大学 国立 秋田大学 2016年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\mathrm{O}$を中心とする半径$1$の円の第$1$象限にある部分を$C$とする.$3$点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$,$\mathrm{R}$は$C$の周上にあり,$2y_1=y_2$および$\angle \mathrm{AOP}=4 \angle \mathrm{AOR}$を満たすものとする.直線$\mathrm{OQ}$と直線$y=1$の交点を$\mathrm{Q}^\prime$,直線$\mathrm{OR}$と直線$y=1$の交点を$\mathrm{R}^\prime$とする.$\angle \mathrm{AOP}=\theta$とするとき,次の問いに答えよ.

(1)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}^\prime$と点$\mathrm{R}^\prime$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が点$\mathrm{A}$に限りなく近づくとき,$\displaystyle \frac{\mathrm{BR}^\prime}{\mathrm{BQ}^\prime}$の極限を求めよ.ただし,$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$であることは用いてよい.
秋田大学 国立 秋田大学 2016年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\mathrm{O}$を中心とする半径$1$の円の第$1$象限にある部分を$C$とする.$3$点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$,$\mathrm{R}$は$C$の周上にあり,$2y_1=y_2$および$\angle \mathrm{AOP}=4 \angle \mathrm{AOR}$を満たすものとする.直線$\mathrm{OQ}$と直線$y=1$の交点を$\mathrm{Q}^\prime$,直線$\mathrm{OR}$と直線$y=1$の交点を$\mathrm{R}^\prime$とする.$\angle \mathrm{AOP}=\theta$とするとき,次の問いに答えよ.

(1)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}^\prime$と点$\mathrm{R}^\prime$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が点$\mathrm{A}$に限りなく近づくとき,$\displaystyle \frac{\mathrm{BR}^\prime}{\mathrm{BQ}^\prime}$の極限を求めよ.ただし,$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$であることは用いてよい.
秋田大学 国立 秋田大学 2016年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\mathrm{O}$を中心とする半径$1$の円の第$1$象限にある部分を$C$とする.$3$点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$,$\mathrm{R}$は$C$の周上にあり,$2y_1=y_2$および$\angle \mathrm{AOP}=4 \angle \mathrm{AOR}$を満たすものとする.直線$\mathrm{OQ}$と直線$y=1$の交点を$\mathrm{Q}^\prime$,直線$\mathrm{OR}$と直線$y=1$の交点を$\mathrm{R}^\prime$とする.$\angle \mathrm{AOP}=\theta$とするとき,次の問いに答えよ.

(1)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}^\prime$と点$\mathrm{R}^\prime$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が点$\mathrm{A}$に限りなく近づくとき,$\displaystyle \frac{\mathrm{BR}^\prime}{\mathrm{BQ}^\prime}$の極限を求めよ.ただし,$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$であることは用いてよい.
福井大学 国立 福井大学 2016年 第3問
原点を$\mathrm{O}$とする$xy$平面上に,$\mathrm{F}(5,\ 0)$と$\mathrm{F}^\prime(-5,\ 0)$とを焦点とし,直線$\ell:y=kx$と直線$\ell^\prime:y=-kx$とを漸近線とする双曲線$C$がある.$C$上に点$\mathrm{P}$をとるとき,以下の問いに答えよ.ただし,$k$は正の定数とする.

(1)双曲線$C$の方程式を求めよ.
(2)点$\mathrm{P}$を通り,$\ell,\ \ell^\prime$に平行な直線をそれぞれ$m,\ m^\prime$とする.$4$つの直線$\ell,\ \ell^\prime,\ m,\ m^\prime$で囲まれた平行四辺形の面積を$S$とするとき,$S$は$C$上の点$\mathrm{P}$のとり方によらずに一定であることを示せ.
(3)$k=2$のとき,$\mathrm{PF} \cdot \mathrm{PF}^\prime=2 \mathrm{OP}^2$をみたす$C$上の点$\mathrm{P}$の座標を求めよ.ただし,$\mathrm{P}$は第$1$象限にあるものとする.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2016年 第3問
$\theta$が第$1$象限の角で$\displaystyle \tan \theta+\frac{1}{\tan \theta}=4$のとき,$\sin \theta+\cos \theta$の値を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2016年 第5問
放物線$\displaystyle y=-\frac{x^2}{3}+2x+9$について,次の設問に答えよ.

(1)頂点および$x$軸,$y$軸との交点の座標を求め,放物線の概形を描け.
(2)第$1$象限の放物線と$x$軸,$y$軸とで囲まれた図形の面積を求めよ.
スポンサーリンク

「象限」とは・・・

 まだこのタグの説明は執筆されていません。