タグ「証明」の検索結果

99ページ目:全1924問中981問~990問を表示)
山形大学 国立 山形大学 2013年 第3問
公差が$0$でない等差数列$\{a_n\}$において,初項から第$n$項までの和を$S_n$とする.また,${a_5}^2+{a_6}^2={a_7}^2+{a_8}^2$,$S_{13}=13$が成り立つとする.このとき,次の問に答えよ.

(1)$a_5+a_8=a_6+a_7$であることを示せ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$S_n$を求めよ.
(4)$m$を自然数とする.$\displaystyle \frac{a_ma_{m+1}}{a_{m+2}}$の値が数列$\{a_n\}$の項として現れるすべての$m$を求めよ.
山形大学 国立 山形大学 2013年 第2問
公差が$0$でない等差数列$\{a_n\}$において,初項から第$n$項までの和を$S_n$とする.また,${a_5}^2+{a_6}^2={a_7}^2+{a_8}^2$,$S_{13}=13$が成り立つとする.このとき,次の問に答えよ.

(1)$a_5+a_8=a_6+a_7$であることを示せ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$S_n$を求めよ.
(4)$m$を自然数とする.$\displaystyle \frac{a_ma_{m+1}}{a_{m+2}}$の値が数列$\{a_n\}$の項として現れるすべての$m$を求めよ.
山形大学 国立 山形大学 2013年 第3問
$n$を$2$以上の自然数とする.このとき,次の問に答えよ.

(1)$\displaystyle \int_1^n \log x \, dx$を求めよ.
(2)関数$y=\log x$の定積分を利用して,次の不等式を証明せよ.
\[ (n-1)! \leqq n^n e^{-n+1} \leqq n! \]
(3)極限値
\[ \lim_{n \to \infty}\frac{\log (n!)}{n \log n} \]
を求めよ.
山形大学 国立 山形大学 2013年 第4問
行列
\[ A=\left( \begin{array}{cc}
\displaystyle\frac{3}{2} & -1 \\
1 & -\displaystyle\frac{1}{2}
\end{array} \right),\quad B=\left( \begin{array}{cc}
p & -2 \\
1 & q
\end{array} \right),\quad J=\left( \begin{array}{cc}
\displaystyle\frac{1}{2} & 1 \\
0 & \displaystyle\frac{1}{2}
\end{array} \right) \]
が$AB=BJ$を満たすとき,次の問いに答えよ.ただし,$p,\ q$は定数であり,以下で用いる$n$は自然数である.

(1)$p,\ q$の値を求めよ.
(2)$\displaystyle J^n=\frac{1}{2^n} \left( \begin{array}{cc}
1 & 2n \\
0 & 1
\end{array} \right)$を示せ.
(3)$\displaystyle A^n=\frac{1}{2^n} \left( \begin{array}{cc}
1+2n & -2n \\
2n & 1-2n
\end{array} \right)$を示せ.
(4)行列$A^n$の表す$1$次変換により,$xy$平面上の点$(p,\ 1)$,$(-2,\ q)$が,それぞれ点$\mathrm{P}_n$,$\mathrm{Q}_n$に移される.原点を$\mathrm{O}$として,$\overrightarrow{\mathrm{OP}}_n$と$\overrightarrow{\mathrm{OQ}}_n$のなす角を$\theta_n$とするとき,$\displaystyle \lim_{n \to \infty}\cos \theta_n$を求めよ.
山形大学 国立 山形大学 2013年 第4問
自然数$n$に対し,座標平面上の点$(n,\ 1)$を$\mathrm{P}_n$とする.また,$r$を正の実数とする.このとき,次の問に答えよ.

(1)$1$次変換$f$は,すべての$n$に対して$f(\mathrm{P}_n)=\mathrm{P}_{n+1}$を満たすとする.$f$を表す行列$A$を求めよ.
(2)$1$次変換$g$は,点$(1,\ 1)$を点$(-2r,\ 1)$に,点$(-2r,\ 1)$を点$(2r^2-r,\ 1)$に移すとする.$g$を表す行列$B$を求めよ.
(3)$C=ABA^{-1}$とする.行列$C^n$を推定し,それが正しいことを数学的帰納法によって示せ.
(4)行列$C^n$で表される$1$次変換による点$(1,\ r)$の像の$x$座標を$x_n$とする.$r<1$のとき,$\displaystyle \lim_{n \to \infty}x_n$を求めよ.
山形大学 国立 山形大学 2013年 第1問
面積が$1$である$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$上に点$\mathrm{D}$があり,辺$\mathrm{CA}$上に点$\mathrm{E}$があり,辺$\mathrm{AB}$上に点$\mathrm{F}$がある.正の実数$x,\ y,\ z,\ w$を$\mathrm{AF}:\mathrm{FB}=x:y$,$\mathrm{BD}:\mathrm{DC}=y:z$,$\mathrm{CE}:\mathrm{EA}=z:w$となるように定める.線分$\mathrm{AD}$,$\mathrm{BE}$,$\mathrm{CF}$が$\triangle \mathrm{ABC}$の内部の点$\mathrm{G}$で交わるとき,次の問に答えよ.

(1)三角形の面積の比を用いて,$\displaystyle \frac{x}{y} \cdot \frac{y}{z} \cdot \frac{z}{w}=1$となることを示せ.
(2)$\triangle \mathrm{AFE}$の面積を$x,\ y,\ z$を用いて表せ.
(3)$\displaystyle \alpha=\frac{x}{y},\ \beta=\frac{y}{z}$とする.このとき,$\triangle \mathrm{DEF}$の面積を$\alpha,\ \beta$を用いて表せ.
(4)$\triangle \mathrm{DEF}$の面積が最大となるのは,点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が各辺の中点となるときであることを示せ.
山形大学 国立 山形大学 2013年 第2問
公差が$0$でない等差数列$\{a_n\}$において,初項から第$n$項までの和を$S_n$とする.また,${a_5}^2+{a_6}^2={a_7}^2+{a_8}^2$,$S_{13}=13$が成り立つとする.このとき,次の問に答えよ.

(1)$a_5+a_8=a_6+a_7$であることを示せ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$S_n$を求めよ.
(4)$m$を自然数とする.$\displaystyle \frac{a_ma_{m+1}}{a_{m+2}}$の値が数列$\{a_n\}$の項として現れるすべての$m$を求めよ.
山形大学 国立 山形大学 2013年 第3問
$R,\ r$を正の実数とし,$2r<R \leqq 3r$とする.右図のように,原点 \\
$\mathrm{O}$を中心とする半径$R$の固定された円$S$の内部に点$\mathrm{O}^\prime$を中心と \\
する半径$r$の円$T$があり,円$T$は円$S$に接しながらすべらずに \\
転がるものとする.ただし,点$\mathrm{O}^\prime$は点$\mathrm{O}$のまわりを反時計まわり \\
に動くものとする.はじめに点$\mathrm{O}^\prime$は$(R-r,\ 0)$の位置にあり, \\
円$T$上の点$\mathrm{P}$は$(R,\ 0)$の位置にあるとする.$x$軸の正の部分と \\
動径$\mathrm{OO}^\prime$のなす角が$\theta$ラジアンのとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問に答えよ.
\img{72_2151_2013_1}{60}


(1)$x(\theta),\ y(\theta)$を$\theta$を用いて表せ.
(2)$\displaystyle 0<\theta<\frac{2r}{R} \cdot \frac{3}{2}\pi$において,$x(\theta)$が最小となるときの$\theta$の値を求めよ.
(3)$R=3,\ r=1$とする.$\theta>0$で点$\mathrm{P}$がはじめて$x$軸に到達したときの角$\theta_0$を求めよ.また,$0 \leqq \theta \leqq \theta_0$のとき,$y(\theta) \geqq 0$を示せ.
(4)$R=3,\ r=1$とする.$0 \leqq \theta \leqq \theta_0$における点$\mathrm{P}$の軌跡と$x$軸で囲まれた図形の面積を求めよ.
三重大学 国立 三重大学 2013年 第3問
正四面体$\mathrm{ABCD}$を考える.点$\mathrm{P}$は,時刻$0$では頂点$\mathrm{A}$にあり,$1$秒ごとに,今いる頂点から他の$3$頂点のいずれかに,等しい確率で動くとする.$n$を$0$以上の整数とし,点$\mathrm{P}$が$n$秒後に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$にある確率を,それぞれ$p_n,\ q_n,\ r_n,\ s_n$とする.このとき以下の問いに答えよ.

(1)$n \geqq 1$に対し$q_n=r_n=s_n$となることを数学的帰納法で証明せよ.
(2)$n \geqq 1$に対し$p_n,\ q_n$を$p_{n-1},\ q_{n-1}$で表せ.ただし,$p_0=1,\ q_0=0$とする.
(3)$c_n=p_n-q_n$とおいて$c_n$の一般項を求めよ.
(4)$p_n$の一般項を求めよ.
三重大学 国立 三重大学 2013年 第4問
$e$で自然対数の底を表す.関数$f(x)$を
\[ f(x)=\log (x+\sqrt{x^2+e}) \]
で定めるとき,以下の問いに答えよ.

(1)関数$f(x)$を微分せよ.また$f^\prime(x)$が偶関数であることを示せ.
(2)定積分
\[ \int_{-1}^1 f(x) \cos \left( \frac{\pi}{2}x \right) \, dx \]
を求めよ.
(3)数列$\{a_n\}$を
\[ a_n=\int_{-1}^1 x^{2n} f(x) \cos \left( \frac{\pi}{2}x \right) \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.$n$を$2$以上とするとき,$a_n$と$a_{n-1}$の間に成り立つ関係式を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。