タグ「証明」の検索結果

90ページ目:全1924問中891問~900問を表示)
信州大学 国立 信州大学 2013年 第4問
$\theta$は実数とする.行列$A=\left( \begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array} \right)$について,次の問いに答えよ.

(1)すべての自然数$k$に対して$A^k=\left( \begin{array}{rr}
\cos k\theta & \sin k\theta \\
-\sin k\theta & \cos k\theta
\end{array} \right)$が成り立つことを,数学的帰納法を用いて示せ.
(2)$n$は2以上の自然数とし,$\displaystyle \theta=\frac{2\pi}{n}$とする.$B=A+A^2+\cdots +A^{n-1}$とおくとき,$AB=B+E-A$が成り立つことを示せ.ただし,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.
(3)(2)の条件のもとで,$B=-E$が成り立つことを示せ.
金沢大学 国立 金沢大学 2013年 第4問
行列$A=\left( \begin{array}{cc}
\displaystyle\frac{7}{2} & \displaystyle\frac{1}{2} \\
\displaystyle\frac{1}{2} & \displaystyle\frac{7}{2}
\end{array} \right),\ E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$に対して,次の問いに答えよ.

(1)実数$x,\ y,\ u,\ v$が,$xA+yE=uA+vE$を満たすならば,$x=u,\ y=v$であることを示せ.
(2)$A=a_1A+b_1E,\ A^2=a_2A+b_2E$となる実数$a_1,\ b_1,\ a_2,\ b_2$を求めよ.
(3)$n=1,\ 2,\ 3,\ \cdots$に対して,$A^n=a_nA+b_nE$となる実数$a_n,\ b_n$を$n$を用いて表せ.
(4)$n=1,\ 2,\ 3,\ \cdots$に対して,実数$c_n,\ d_n$が
\[ A+A^2+A^3+\cdots +A^n=c_nA+d_nE \]
を満たしているとき,極限$\displaystyle \lim_{n \to \infty}\frac{c_n}{d_n}$を求めよ.
神戸大学 国立 神戸大学 2013年 第5問
動点$\mathrm{P}$が,図のような正方形$\mathrm{ABCD}$の頂点$\mathrm{A}$から出発し,さいころをふるごとに,次の規則により正方形のある頂点から他の頂点に移動する.

出た目の数が$2$以下なら辺$\mathrm{AB}$と平行な方向に移動する.
出た目の数が$3$以上なら辺$\mathrm{AD}$と平行な方向に移動する.

$n$を自然数とするとき,さいころを$2n$回ふった後に動点$\mathrm{P}$が$\mathrm{A}$にいる確率を$a_n$,$\mathrm{C}$にいる確率を$c_n$とする.次の問いに答えよ.
(図は省略)

(1)$a_1$を求めよ.
(2)さいころを$2n$回ふった後,動点$\mathrm{P}$は$\mathrm{A}$または$\mathrm{C}$にいることを証明せよ.
(3)$a_n,\ c_n$を$n$を用いてそれぞれ表せ.
(4)$\displaystyle \lim_{n \to \infty}a_n$,$\displaystyle \lim_{n \to \infty}c_n$をそれぞれ求めよ.
九州大学 国立 九州大学 2013年 第4問
座標平面上の円$(x-1)^2+(y-1)^2=2$を$C$とする.以下の問いに答えよ.

(1)直線$y=x-2$は円$C$に接することを示せ.また,接点の座標も求めよ.
(2)円$C$と放物線$\displaystyle y=\frac{1}{4}x^2-1$の共有点の座標をすべて求めよ.
(3)不等式$\displaystyle y \geqq \frac{1}{4}x^2-1$の表す領域を$D$とする.また,不等式$|x|+|y| \leqq 2$の表す領域を$A$とし,不等式$(|x|-1)^2+(y-1)^2 \leqq 2$の表す領域を$B$とする.そして,和集合$A \cup B$,すなわち領域$A$と領域$B$を合わせた領域を$E$とする.このとき,領域$D$と領域$E$の共通部分$D \cap E$を図示し,さらに,その面積を求めよ.
熊本大学 国立 熊本大学 2013年 第1問
$n$を$3$以上の奇数として,次の集合を考える.
\[ A_n=\left\{ \; _n \mathrm{C}_1,\ _n \mathrm{C}_2,\ \cdots,\ _n \mathrm{C}_{\frac{n-1}{2}} \; \right\} \]
以下の問いに答えよ.

(1)$A_9$のすべての要素を求め,それらの和を求めよ.
(2)$\displaystyle _n \mathrm{C}_{\frac{n-1}{2}}$が$A_n$内の最大の数であることを示せ.
(3)$A_n$内の奇数の個数を$m$とする.$m$は奇数であることを示せ.
熊本大学 国立 熊本大学 2013年 第3問
半径$1$,中心角$\theta (0<\theta<\pi)$の扇形に内接する円の半径を$f(\theta)$とおく.以下の問いに答えよ.

(1)$f(\theta)$を求めよ.
(2)$0<\theta<\pi$の範囲で$f(\theta)$は単調に増加し,$f^\prime(\theta)$は単調に減少することを示せ.
(3)定積分
\[ \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} f(\theta) \, d\theta \]
を求めよ.
熊本大学 国立 熊本大学 2013年 第3問
半径$1$,中心角$\theta (0<\theta<\pi)$の扇形に内接する円の半径を$f(\theta)$とおく.以下の問いに答えよ.

(1)$f(\theta)$を求めよ.
(2)$0<\theta<\pi$の範囲で$f(\theta)$は単調に増加し,$f^\prime(\theta)$は単調に減少することを示せ.
(3)定積分
\[ \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} f(\theta) \, d\theta \]
を求めよ.
千葉大学 国立 千葉大学 2013年 第6問
整数$p,\ q \ (p \geqq q \geqq 0)$に対して$2$項係数を$\displaystyle \comb{p}{q}=\frac{p!}{q!(p-q)!}$と定める.なお$0!=1$とする.

(1)$n,\ k$が$0$以上の整数のとき,
\[ \comb{n+k+1}{k+1} \times \left( \frac{1}{\comb{n+k}{k}}-\frac{1}{\comb{n+k+1}{k}} \right) \]
を計算し,$n$によらない値になることを示せ.
(2)$m$が$3$以上の整数のとき,和$\displaystyle \frac{1}{\comb{3}{3}}+\frac{1}{\comb{4}{3}}+\frac{1}{\comb{5}{3}}+\cdots +\frac{1}{\comb{m}{3}}$を求めよ.
千葉大学 国立 千葉大学 2013年 第10問
$\tan 10^\circ=\tan 20^\circ \cdot \tan 30^\circ \cdot \tan 40^\circ$を示せ.
東京工業大学 国立 東京工業大学 2013年 第1問
次の問いに答えよ.

(1)$2$次方程式$x^2-3x+5=0$の$2$つの解$\alpha,\ \beta$に対し,$\alpha^n+\beta^n-3^n$はすべての正の整数$n$について$5$の整数倍になることを示せ.
(2)$6$個のさいころを同時に投げるとき,ちょうど$4$種類の目が出る確率を既約分数で表せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。