タグ「証明」の検索結果

87ページ目:全1924問中861問~870問を表示)
埼玉大学 国立 埼玉大学 2013年 第3問
次の問いに答えよ.

(1)$f(x)$を区間$0 \leqq x \leqq 1$で定義された連続関数とする.次の等式が成り立つことを示せ.
\[ \int_0^\pi xf(\sin x) \, dx=\frac{\pi}{2}\int_0^\pi f(\sin x) \, dx \]
(2)$a>1$とする.(1)を用いて,積分
\[ \int_0^\pi \frac{x(a^2-4 \cos^2 x)\sin x}{a^2-\cos^2 x} \, dx \]
を求めよ.
名古屋大学 国立 名古屋大学 2013年 第3問
$k,\ m,\ n$は整数とし,$n \geqq 1$とする.$\comb{m}{k}$を二項係数として,$S_k(n),\ T_m(n)$を以下のように定める.
\begin{align}
& S_k(n)=1^k+2^k+3^k+\cdots +n^k,\quad S_k(1)=1 \quad (k \geqq 0) \nonumber \\
& T_m(n)=\comb{m}{1}S_1(n)+\comb{m}{2}S_2(n)+\comb{m}{3}S_3(n)+\cdots +\comb{m}{m-1}S_{m-1}(n) \nonumber \\
& \phantom{T_m(n)}=\sum_{k=1}^{m-1}\comb{m}{k}S_k(n) \quad (m \geqq 2) \nonumber
\end{align}

(1)$T_m(1)$と$T_m(2)$を求めよ.
(2)一般の$n$に対して$T_m(n)$を求めよ.
(3)$p$が7以上の素数のとき,$S_1(p-1),\ S_2(p-1),\ S_3(p-1),\ S_4(p-1)$は$p$の倍数であることを示せ.
北海道大学 国立 北海道大学 2013年 第3問
空間ベクトル$\overrightarrow{a}=(1,\ 0,\ 0)$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$を考える.$|\overrightarrow{b}|=|\overrightarrow{c}|=|\overrightarrow{d}|=1$で,$\overrightarrow{b}$は$xy$平面上にあり,その$y$成分は正とする.また,$\overrightarrow{a} \cdot \overrightarrow{b}=p$とおく.

(1)$|p|<1$であることを示せ.また,$p$を用いて$\overrightarrow{b}$の成分表示を書け.
(2)$\overrightarrow{c}$と$\overrightarrow{d}$は相異であり,
\[ \overrightarrow{a} \cdot \overrightarrow{c}=\overrightarrow{a} \cdot \overrightarrow{d}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{b} \cdot \overrightarrow{d}=p \]
をみたすとする.$\overrightarrow{c}$の$z$成分が正のとき,$p$を用いて$\overrightarrow{c}$と$\overrightarrow{d}$の成分表示を書け.
(3)上の条件に加えて$\overrightarrow{c} \cdot \overrightarrow{d}=p$であるとき$p$の値を求めよ.
名古屋大学 国立 名古屋大学 2013年 第2問
$x>0$とし,$f(x)=\log x^{100}$とおく.

(1)次の不等式を証明せよ.
\[ \frac{100}{x+1}<f(x+1)-f(x)<\frac{100}{x} \]
(2)実数$a$の整数部分($k \leqq a<k+1$となる整数$k$)を$[a]$で表す.整数$[f(1)]$,$[f(2)]$,$[f(3)]$,$\cdots$,$[f(1000)]$のうちで異なるものの個数を求めよ.必要ならば$\log 10=2.3026$として計算せよ.
大阪大学 国立 大阪大学 2013年 第1問
三角関数の極限に関する公式
\[ \lim_{x \to 0}\frac{\sin x}{x}=1\]
を示すことにより,$\sin x$の導関数が$\cos x$であることを証明せよ.
大阪大学 国立 大阪大学 2013年 第3問
$4$個の整数
\[ n+1,\quad n^3+3,\quad n^5+5,\quad n^7+7 \]
がすべて素数となるような正の整数$n$は存在しない.これを証明せよ.
大阪大学 国立 大阪大学 2013年 第1問
$xy$平面において,点$(x_0,\ y_0)$と直線$ax+by+c=0$の距離は
\[ \frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} \]
である.これを証明せよ.
大阪大学 国立 大阪大学 2013年 第5問
$n$を3以上の整数とする.$n$個の球$K_1,\ K_2,\ \cdots,\ K_n$と$n$個の空の箱$H_1,\ H_2,\ \cdots,\ H_n$がある.以下のように,$K_1,\ K_2,\ \cdots,\ K_n$の順番に,球を箱に1つずつ入れていく. \\
まず,球$K_1$を箱$H_1,\ H_2,\ \cdots,\ H_n$のどれか1つに無作為に入れる.次に,球$K_2$を,箱$H_2$が空ならば箱$H_2$に入れ,箱$H_2$が空でなければ残りの$n-1$個の空の箱のどれか1つに無作為に入れる. \\
一般に,$i=2,\ 3,\ \cdots,\ n$について,球$K_i$を,箱$H_i$が空ならば箱$H_i$に入れ,箱$H_i$が空でなければ残りの$n-i+1$個の空の箱のどれか1つに無作為に入れる.

(1)$K_n$が入る箱は$H_1$または$H_n$である.これを証明せよ.
(2)$K_{n-1}$が$H_{n-1}$に入る確率を求めよ.
岡山大学 国立 岡山大学 2013年 第1問
以下の問いに答えよ.

(1)整数$x,\ y$が$25x-31y=1$を満たすとき,$x-5$は$31$の倍数であることを示せ.
(2)$1 \leqq y \leqq 100$とする.このとき,不等式
\[ 0 \leqq 25x-31y \leqq 1 \]
を満たす整数の組$(x,\ y)$をすべて求めよ.
岡山大学 国立 岡山大学 2013年 第2問
等式
\[ |x-3|+|y|=2(|x+3|+|y|) \]
を満たす$xy$平面上の点$(x,\ y)$からなる図形を$T$とする.

(1)点$(a,\ b)$が$T$上にあれば,点$(a,\ -b)$も$T$上にあることを示せ.
(2)$T$で囲まれる領域の面積を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。