タグ「証明」の検索結果

84ページ目:全1924問中831問~840問を表示)
名古屋市立大学 公立 名古屋市立大学 2014年 第4問
$xy$平面において,曲線$y=nx^2$($n$は自然数,$x \geqq 0$)を$C_n$とし,直線$y=1$を$L$とする.$2$つの曲線$C_n$,$C_{n+1}$および$L$で囲まれた図形の面積を$S_n$とする.次の問いに答えよ.

(1)$S_n$を求めよ.
(2)任意の$n$に対して$S_n>S_{n+1}$が成り立つことを示せ.
(3)$\displaystyle \sum_{k=1}^n S_k>\frac{1}{2}$となる最小の$n$を求めよ.
横浜市立大学 公立 横浜市立大学 2014年 第2問
ある開区間$D$で与えられた関数$f(x)$は,$2$階微分可能で,第$2$次導関数$f^{\prime\prime}(x)$は連続で,更に$f^{\prime\prime}(x)<0$と仮定する.以下の問いに答えよ.

(1)$a_1<a_2<a_3$を満たす$D$の$a_1,\ a_2,\ a_3$に対して
\[ \frac{f(a_2)-f(a_1)}{a_2-a_1}>\frac{f(a_3)-f(a_2)}{a_3-a_2} \]
を示せ.
(2)$x_1,\ x_2$を$D$の実数とする.$0 \leqq \alpha \leqq 1$を満たす$\alpha$に対して
\[ f(\alpha x_1+(1-\alpha)x_2) \geqq \alpha f(x_1)+(1-\alpha) f(x_2) \]
を示せ.
(3)$x_1,\ x_2,\ x_3$を$D$の実数とする.$\alpha_1,\ \alpha_2,\ \alpha_3 \geqq 0$及び$\alpha_1+\alpha_2+\alpha_3=1$を満たす$\alpha_1$,$\alpha_2$,$\alpha_3$に対して
\[ f(\alpha_1 x_1+\alpha_2 x_2+\alpha_3 x_3) \geqq \alpha_1 f(x_1)+\alpha_2 f(x_2)+\alpha_3 f(x_3) \]
を示せ.
(4)$D=(0,\ \infty)$とする.上の議論を用いて,$D$の$x_1,\ x_2,\ x_3$に対して不等式
\[ \frac{x_1+x_2+x_3}{3} \geqq \sqrt[3]{x_1x_2x_3} \]
を示せ.
横浜市立大学 公立 横浜市立大学 2014年 第4問
$n$を$4$以上の整数とする.$1$番から$n$番までの番号がふられたボールが$1$つずつある.このとき,以下の問いに答えよ.

(1)以下のような操作でボールを$1$列に並べる:

(i) $1$番のボールを適当な位置におく.
(ii) $2$番のボールを$1$番のボールの左または右に同じ確率でおく.
(iii) $3$番のボールをすでに並んでいる$2$つのボールの左または間または右に同じ確率でおく.
\mon[$\tokeishi$] 以下$n$番まで番号順に,$k$番のボールを,すでに並んでいるボールの一番左または間または一番右に同じ確率でおく,ことを繰り返す.

例えば,左から$2$番,$1$番,$3$番のボールが並んでいるとき,$4$番のボールが$2$番と$1$番の間におかれる確率は$\displaystyle \frac{1}{4}$である.
$n$番のボールをおき終えたとき,$i$番のボールが左から$j$番目に並ぶ確率は$\displaystyle \frac{1}{n}$であることを証明せよ.ただし,$i$と$j$は$1$以上,$n$以下の整数とする.
(2)$(1)$のボールの列を,(左から)番号順に並び替えるため,以下の操作を考える:
隣り合った$2$つのボールの組で,左のボールの番号が右のそれより大きなもの(入れ替え可能な組と呼ぶ)が存在するとき,そのようなボールの組を$1$つ選び,入れ替える.
入れ替え可能な組が複数あった場合に,入れ替える組をどのように選んだとしても,この操作を繰り返すことにより,すべてのボールの列は,必ず番号順の列になることを証明せよ.
(3)$(2)$の操作の回数は,入れ替える組の選び方とは無関係であることを証明せよ.
(4)$(2)$においてボールの列を番号順に並べ替えるとき,$i$番のボールを,より番号の小さいボールと入れ替える回数の期待値を$E_i$とする.このとき,
\[ \sum_{i=1}^n E_i \]
を求めよ.
横浜市立大学 公立 横浜市立大学 2014年 第2問
次の問いに答えよ.

(1)次の各問いに答えよ.

\mon[(ア)] $\displaystyle \frac{8}{9}<\frac{q}{p}<\frac{9}{10}$をみたす自然数$p,\ q$における$p$の最小値を記せ.

\mon[(イ)] $\displaystyle \frac{2013}{2014}<\frac{q}{p}<\frac{2014}{2015}$をみたす自然数$p,\ q$における$p$の最小値を記せ.

(2)自然数$a,\ b,\ c,\ d$が$ad-bc=1$をみたすとき,次の各問いに答えよ.

\mon[(ア)] 自然数$p,\ q$が$dq-cp>0$,$ap-bq>0$をみたすとき,$p$の最小値および$p$が最小となるような$q$の値をそれぞれ$a,\ b,\ c,\ d$を用いて表せ.
\mon[(イ)] $\displaystyle \frac{c}{d}<\frac{q}{p}<\frac{a}{b}$をみたす自然数$p,\ q$で$p$が最小となるような分数$\displaystyle \frac{q}{p}$を考えることにより,$a+c$,$b+d$が互いに素であることを示せ.
\mon[(ウ)] $A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right),\ a+d=10$のとき,$(A+A^{-1})^3$の値を求めよ.
北九州市立大学 公立 北九州市立大学 2014年 第3問
$\displaystyle S_n=1-\frac{1}{2}+\frac{1}{3}- \cdots +\frac{(-1)^{n-1}}{n} (n=1,\ 2,\ 3,\ \cdots)$と定義する.以下の問いに答えよ.

(1)$x \neq -1$のとき,$\displaystyle \frac{1}{x+1}=\sum_{k=0}^{n-1} (-x)^k+\frac{(-x)^n}{x+1}$が成立することを証明せよ.
(2)$n=1,\ 2,\ 3,\ \cdots$のとき,不等式$\displaystyle -\frac{1}{n+1} \leqq \int_0^1 \frac{(-x)^n}{x+1} \, dx \leqq \frac{1}{n+1}$が成立することを証明せよ.
(3)$\displaystyle S_n=\sum_{k=0}^{n-1} \int_0^1 (-x)^k \, dx$が成立することを証明せよ.
(4)$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
北九州市立大学 公立 北九州市立大学 2014年 第1問
数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とし,$S_n$が次の式で与えられるとする.
\[ S_n=a_n+2n^2-n-1 \]
また,数列$\{b_n\}$は次の条件によって与えられるとする.
\[ b_1=-2,\quad b_{n+1}=2b_n+a_n \]
以下の問題に答えよ.

(1)$n$が$2$以上の自然数のとき,$S_{n-1}$を$n$の式で表せ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)数列$\{b_n\}$の一般項を求めよ.
(4)$n$が$2$以上の自然数のとき,不等式$b_n>0$を証明せよ.
(5)数列$\{b_n\}$の初項から第$n$項までの和を$T_n$とする.$T_n$を$n$の式で表せ.
北九州市立大学 公立 北九州市立大学 2014年 第2問
$2$つの曲線$C_1:f(x)=x^3-x$と$C_2:g(x)=x^3+x^2+ax$について考える.ただし,$a$は定数である.曲線$C_1$上の点$\displaystyle \mathrm{A}(\frac{1}{2},\ -\frac{3}{8})$における接線を$\ell$とし,点$\mathrm{A}$と異なる点$\mathrm{B}(p,\ q)$において曲線$C_1$と直線$\ell$は交わっている.以下の問題に答えよ.

(1)曲線$C_1$を原点に関して対称移動したグラフは$C_1$自身であることを証明せよ.
(2)直線$\ell$の方程式と$p,\ q$の値を求めよ.
(3)関数$f(x)$の$\displaystyle p \leqq x \leqq \frac{1}{2}$における最大値と最小値を求めよ.
(4)関数$g(x)$が極値を持たないための必要十分条件を導関数$g^\prime(x)$を用いて表せ.また,このときの定数$a$の値の範囲を求めよ.
(5)$a=1$のとき,$2$つの曲線$C_1$と$C_2$で囲まれた図形の面積を求めよ.
京都府立大学 公立 京都府立大学 2014年 第1問
$\mathrm{O}$を原点とする$xyz$空間内に$5$点$\mathrm{A}(10,\ 0,\ 0)$,$\mathrm{B}(10,\ 5 \sqrt{3},\ 15)$,$\mathrm{C}(8,\ -\sqrt{3},\ -3)$,$\mathrm{D}(8,\ 5 \sqrt{3},\ 15)$,$\mathrm{E}(-4,\ \sqrt{3},\ 3)$をとる.$2$点$\mathrm{O}$,$\mathrm{A}$を通る直線を$\ell_1$,$2$点$\mathrm{O}$,$\mathrm{B}$を通る直線を$\ell_2$,$2$点$\mathrm{C}$,$\mathrm{D}$を通る直線を$\ell_3$,$2$点$\mathrm{C}$,$\mathrm{E}$を通る直線を$\ell_4$とする.$2$つの直線$\ell_1$,$\ell_3$の交点を$\mathrm{F}$,$2$つの直線$\ell_2$,$\ell_3$の交点を$\mathrm{G}$,$2$つの直線$\ell_2$,$\ell_4$の交点を$\mathrm{H}$,$2$つの直線$\ell_1$,$\ell_4$の交点を$\mathrm{I}$とする.以下の問いに答えよ.

(1)$6$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$は同一平面上にあることを示せ.
(2)$4$点$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$,$\mathrm{I}$の座標を求めよ.
(3)四角形$\mathrm{FGHI}$の面積を求めよ.
(4)四角形$\mathrm{FGHI}$に外接する円の中心座標と半径を求めよ.
京都府立大学 公立 京都府立大学 2014年 第2問
$p,\ q$は自然数とする.$\alpha,\ \beta$は$\alpha>\beta$を満たす$2$次方程式$x^2-x-1=0$の解とする.$2$つの数列$\{a_n\}$,$\{b_n\}$を

$a_1=0,\quad b_1=1$
$a_{n+1}=(p+q)a_n+pb_n \quad (n=1,\ 2,\ 3,\ \cdots)$
$b_{n+1}=pa_n+qb_n \quad (n=1,\ 2,\ 3,\ \cdots)$

で定める.以下の問いに答えよ.

(1)$a_n>0 (n=2,\ 3,\ 4,\ \cdots)$かつ$b_n>0 (n=2,\ 3,\ 4,\ \cdots)$となることを示せ.
(2)$c_n=\alpha a_n+b_n (n=1,\ 2,\ 3,\ \cdots)$,$d_n=-a_n+\alpha b_n (n=1,\ 2,\ 3,\ \cdots)$とおく.$c_n=(p \alpha+q)^{n-1} (n=1,\ 2,\ 3,\ \cdots)$かつ$d_n=\alpha (p \beta+q)^{n-1} (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを示せ.
(3)$p \beta+q>0$のとき,$\displaystyle \frac{a_{n+1}}{b_{n+1}}>\frac{a_n}{b_n} (n=1,\ 2,\ 3,\ \cdots)$となることを示せ.
京都府立大学 公立 京都府立大学 2014年 第3問
区間$-1 \leqq x \leqq 1$で定義された連続関数$f(x)$を
\[ 12xf(x)+12 \int_0^x f(t) \, dt=15x^3 |x|-16x^3,\quad f(0)=0 \]
によって定める.曲線$C:y=f(x)$を考える.以下の問いに答えよ.

(1)$f(x)$を求めよ.
(2)$f(x)$は$x=0$で微分可能であることを示せ.
(3)曲線$C$と直線$\ell:y=a$との区間$-1 \leqq x \leqq 1$における共有点の個数を,$a$の値によって分類せよ.
(4)曲線$C$と$3$直線$y=-1$,$x=-1$,$x=1$で囲まれる部分を,$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。