タグ「証明」の検索結果

83ページ目:全1924問中821問~830問を表示)
愛知県立大学 公立 愛知県立大学 2014年 第3問
以下の問いに答えよ.

(1)定積分$\displaystyle \int_0^\pi \cos mx \cos nx \, dx$を求めよ.ただし,$m,\ n$は自然数とする.
(2)$a$と$b$を$a<b$を満たす実数とし,$f(x)$と$g(x)$を区間$[a,\ b]$で定義された連続な関数とする.また,
\[ \int_a^b \{f(x)\}^2 \, dx \neq 0,\quad \int_a^b \{g(x)\}^2 \, dx \neq 0 \]
であるとする.このとき,任意の実数$t$に対して
\[ \int_a^b \{tf(x)+g(x)\}^2 \, dx \geqq 0 \]
が成り立つことを用いて,次の不等式が成り立つことを示せ.
\[ \left\{ \int_a^b f(x)g(x) \, dx \right\}^2 \leqq \left( \int_a^b \{f(x)\}^2 \, dx \right) \left( \int_a^b \{g(x)\}^2 \, dx \right) \]
また,等号が成り立つ条件は,$k$を定数として$g(x)=kf(x)$と表せるときであることを示せ.
(3)$f(x)$は区間$[-\pi,\ \pi]$で定義された連続な関数で$\displaystyle \int_{-\pi}^\pi \{f(x)\}^2 \, dx=1$を満たす.このとき,
\[ I=\int_{-\pi}^\pi f(x) \cos 2x \, dx \]
を最大とする$f(x)$とそのときの$I$の値を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2014年 第4問
$xy$平面において,原点$\mathrm{O}$を中心とする半径$4$の円$C$の内側を半径$1$の円$C^\prime$が内接しながら滑ることなく転がるとき,円$C^\prime$上の点$\mathrm{P}$が描く曲線を$X$とする.ただし,点$\mathrm{P}$のはじめの位置は点$\mathrm{P}_0(4,\ 0)$とする.円$C^\prime$の中心$\mathrm{O}^\prime$が原点$\mathrm{O}$の周りを$\theta$だけ回転したときの点$\mathrm{P}$の座標を$(x,\ y)$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OO}^\prime}$の成分を$\theta$を用いて表せ.
(2)$x,\ y$を$\theta$を用いて表せ.
(3)点$\mathrm{P}$における曲線$X$の接線と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とするとき,線分$\mathrm{QR}$の長さは一定であることを示せ.ただし,点$\mathrm{P}$は座標軸上の点ではないものとする.
岩手県立大学 公立 岩手県立大学 2014年 第4問
以下の問いに答えなさい.

下図のように,外接円と内接円の中心が同一となる$\triangle \mathrm{ABC}$を考える.この中心を$\mathrm{O}$とし,$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$と$\triangle \mathrm{ABC}$の内接円との交点をそれぞれ$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.このとき,$\triangle \mathrm{ABC}$の内接円は$\triangle \mathrm{DEF}$の外接円にあたる.すなわち,$\triangle \mathrm{ABC}$の内心が$\triangle \mathrm{DEF}$の外心となっている.
(図は省略)
(1)$\triangle \mathrm{ABC}$および$\triangle \mathrm{DEF}$がいずれも正三角形であることを示しなさい.
(2)$\triangle \mathrm{ABC}$の外接円の半径$\mathrm{OA}$と$\triangle \mathrm{DEF}$の外接円の半径$\mathrm{OD}$との長さの比を求めなさい.
(3)ここで,改めて,$\triangle \mathrm{ABC}$を$(\triangle \mathrm{ABC})_1$,$\triangle \mathrm{DEF}$を$(\triangle \mathrm{ABC})_2$のように表し,一辺の長さが$a$である$(\triangle \mathrm{ABC})_1$の内接円をもとに$(\triangle \mathrm{ABC})_2$を描き,この$(\triangle \mathrm{ABC})_2$の内接円をもとに$(\triangle \mathrm{ABC})_3$を描くということを繰り返していく.このようにして,$(\triangle \mathrm{ABC})_n$を描いたとき,$(\triangle \mathrm{ABC})_n$の一辺の長さを$a$を用いて表しなさい.
富山県立大学 公立 富山県立大学 2014年 第1問
$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を頂点とする正四面体$\mathrm{OABC}$がある.辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{AB}$,$\mathrm{BC}$の中点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$として,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{PQ}}$,$\overrightarrow{\mathrm{QR}}$,$\overrightarrow{\mathrm{RS}}$をそれぞれ$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OB}}$と$\overrightarrow{\mathrm{RS}}$が垂直であることを示せ.
(3)$\overrightarrow{\mathrm{OC}}$と$\overrightarrow{\mathrm{RS}}$のなす角$\theta (0 \leqq \theta \leqq \pi)$を求めよ.
富山県立大学 公立 富山県立大学 2014年 第2問
$n$は正の整数とする.等式$\comb{n}{0}+\comb{n}{1}x+\comb{n}{2}x^2+\cdots +\comb{n}{n}x^n={(1+x)}^n$を用いて,次の等式が成り立つことを示せ.

(1)$\comb{n}{0}-\comb{n}{1}+\comb{n}{2}-\cdots +{(-1)}^n \cdot \comb{n}{n}=0$
(2)$\comb{n}{1}+2 \cdot \comb{n}{2}+3 \cdot \comb{n}{3}+\cdots +n \cdot \comb{n}{n}=n \cdot 2^{n-1}$
(3)$\comb{n}{0}+2 \cdot \comb{n}{1}+3 \cdot \comb{n}{2}+\cdots +(n+1) \cdot \comb{n}{n}=(n+2) \cdot 2^{n-1}$
富山県立大学 公立 富山県立大学 2014年 第4問
$\alpha$は実数とする.行列$A=\left( \begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array} \right)$,$B=\left( \begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array} \right)$について,次の問いに答えよ.

(1)$A=r \left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$と表すとき,$r,\ \theta$の値を求めよ.ただし,$r>0$,$0<\theta<\pi$とする.
(2)$B^n=\left( \begin{array}{cc}
\cos n\alpha & -\sin n\alpha \\
\sin n\alpha & \cos n\alpha
\end{array} \right) (n=1,\ 2,\ 3,\ \cdots)$となることを数学的帰納法を用いて示せ.
(3)$A_n=r_n \left( \begin{array}{cc}
\cos \theta_n & -\sin \theta_n \\
\sin \theta_n & \cos \theta_n
\end{array} \right) (n=1,\ 2,\ 3,\ \cdots)$を$(A_n)^n=A$により定める.ただし,$r_n>0$,$\displaystyle 0<\theta_n<\frac{\pi}{n}$とする.このとき,$r_n$,$\theta_n$を$n$の式で表せ.
(4)$(3)$で定めた$A_n$を用いて行列$T_n$を$T_n=nA_n$により定める.点$\mathrm{O}$を原点とする座標平面上において,$T_n$の表す$1$次変換によって点$(1,\ 0)$が移される点を$\mathrm{P}_n$とするとき,$\triangle \mathrm{OP}_n \mathrm{P}_{n+1}$の面積$S_n$を$n$の式で表せ.また,極限$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
広島市立大学 公立 広島市立大学 2014年 第2問
次の問いに答えよ.

(1)次の条件によって定められる数列$\{a_n\}$の一般項を求めよ.
\[ a_1=2,\quad a_{n+1}-a_n=(n+1)(n+2) \quad (n=1,\ 2,\ 3,\ \cdots) \]
(2)$A=\left( \begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array} \right)$とし,$pA+qE$($p,\ q$は実数)の形の$2$次正方行列全体の集合を$M$とする.ただし,$E$は$2$次の単位行列とする.

(i) $A$の逆行列$A^{-1}$を求めよ.
(ii) $A^{-1}$は集合$M$に属することを示せ.

(3)$m,\ n$を正の整数として次の命題を考える.

「$m^2+2n^2$が$3$の倍数でない \quad $\Longrightarrow$
($m$は$3$の倍数でない$\ $または$\ n$は$3$の倍数である)」

(i) この命題の対偶を述べよ.
(ii) この命題が偽であることを示せ.
広島市立大学 公立 広島市立大学 2014年 第3問
四面体$\mathrm{OABC}$は,$\mathrm{OA}=\mathrm{BC}$,$\mathrm{OB}=\mathrm{AC}$,$\mathrm{OC}=\mathrm{AB}$を満たしているとし,$\mathrm{OA}=a$,$\mathrm{OB}=b$,$\mathrm{OC}=c$とおく.三角形$\mathrm{ABC}$と三角形$\mathrm{OAC}$の重心をそれぞれ$\mathrm{G}$,$\mathrm{H}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OG}}$,$\overrightarrow{\mathrm{BH}}$をそれぞれ$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(2)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を$a,\ b,\ c$を用いて表せ.
(3)$\mathrm{OG} \perp \mathrm{BH}$であるとき,$a^2+c^2=3b^2$が成り立つことを示せ.
広島市立大学 公立 広島市立大学 2014年 第4問
関数$f(x)=4 \sin x+(\pi-2x) \cos x (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)$f^\prime(x)$,$f^{\prime\prime}(x)$を求めよ.
(2)$f^\prime(x)$は$0 \leqq x \leqq \pi$で減少することを示せ.
(3)$f(x)$の増減および曲線$y=f(x)$の凹凸を調べよ.
(4)曲線$y=f(x)$,$x$軸,$y$軸および直線$x=\pi$で囲まれた部分の面積を求めよ.
宮城大学 公立 宮城大学 2014年 第4問
次の問いに答えなさい.

(1)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=7$,$\mathrm{AD}=5$であるとき,辺$\mathrm{CD}$の長さを求めよ.
(2)一般に任意の四角形は必ずしも円に内接しない.では,相異なる$4$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$をこの順に並べた四角形$\mathrm{PQRS}$が円に内接するための「角度に関する必要十分条件」を一つだけ簡潔に記せ.ただし,証明は不要である.
(3)平行四辺形$\mathrm{KLMN}$が円に内接すれば,この平行四辺形は長方形であることを証明せよ.
(図は省略)
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。