タグ「証明」の検索結果

81ページ目:全1924問中801問~810問を表示)
大阪市立大学 公立 大阪市立大学 2014年 第4問
座標空間内に$4$点$\mathrm{A}(0,\ -1,\ 0)$,$\mathrm{B}(2,\ t,\ 1-t)$,$\mathrm{C}(0,\ s,\ -1)$,$\mathrm{D}(3,\ 2,\ 1)$がある.ただし,$t$と$s$は実数で$t>-1$をみたし,また$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$は垂直であるとする.次の問いに答えよ.

(1)$s$を$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$の両方に垂直で大きさが$1$のベクトル$\overrightarrow{n}=(p,\ q,\ r)$のうち$p>0$となるものを$t$を用いて表せ.
(3)$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が同一平面に含まれるための必要十分条件は,$\displaystyle t=-\frac{1}{3}$または$t=1$であることを証明せよ.
首都大学東京 公立 首都大学東京 2014年 第1問
$s,\ t,\ u$を実数,$i$を虚数単位とし,$\displaystyle \omega=\frac{-1+\sqrt{3}i}{2}$とする.方程式
\[ f(x)=x^4+sx^3-tx^2+ux+1=0 \]
が$\omega$を解にもつとき,以下の問いに答えなさい.

(1)$-t=s+1,\ u=s$であることを示しなさい.
(2)$f(\omega^2)=0$であることを示しなさい.
(3)方程式$f(x)=0$が$\omega$,$\omega^2$と異なる解$\alpha$を$2$重解にもつような$s$と$\alpha$の組$(s,\ \alpha)$をすべて求めなさい.
首都大学東京 公立 首都大学東京 2014年 第2問
$2$次正方行列$M=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$についての条件
\[ (*) a=d \text{かつ} b=-c \]
を考える.$(*)$を満たす$M$に対して,実数$f(M)$を$f(M)=\sqrt{a^2+b^2}$と定める.以下の問いに答えなさい.

(1)$2$次正方行列$A,\ B$がともに$(*)$を満たすならば,積$AB$も$(*)$を満たすことを証明しなさい.
(2)$2$次正方行列$A,\ B$がともに$(*)$を満たすならば,$f(AB)=f(A)f(B)$が成り立つことを証明しなさい.
(3)$A=16 \left( \begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array} \right)$に対して$f(A^n)$が十進法で$10$けた以上となる自然数$n$のうち最小のものを求めなさい.ただし,本問においては$\log_{10}2=0.301$とする.
首都大学東京 公立 首都大学東京 2014年 第2問
空間内の$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$について,どの$3$点も同一直線上にはないとする.また,正の実数$a,\ b$は$\sqrt{2}a<b<2a$を満たすとし,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=a$,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=b$とする.以下の問いに答えなさい.

(1)三角形$\mathrm{OAB}$は鈍角三角形であることを示しなさい.
(2)線分$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$上(ただし,端点を除く)にそれぞれ点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$があり,三角形$\mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}^\prime$は正三角形であるとする.このとき,直線$\mathrm{AB}$と直線$\mathrm{A}^\prime \mathrm{B}^\prime$は平行であることを示しなさい.
岡山県立大学 公立 岡山県立大学 2014年 第2問
次の問いに答えよ.

(1)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$と単位行列$E$,零行列$O$に対して,等式
\[ A^2-(a+d)A+(ad-bc)E=O \]
が成り立つことを示せ.
(2)行列$B=\left( \begin{array}{cc}
1 & \sqrt{3}+1 \\
\sqrt{3}-1 & 2
\end{array} \right)$と自然数$n$に対して,
\[ B+2B^2+3B^3+\cdots +nB^n=b_nB \]
を満たす実数$b_n$を求めよ.
岡山県立大学 公立 岡山県立大学 2014年 第3問
次の問いに答えよ.

(1)体積が$V$,表面積が$S$,底面の半径が$r$の円柱を考える.

(i) $S$を$V$と$r$で表せ.
(ii) $V$の値を一定にするとき,$S$の最小値とそれを与える$r$の値を求めよ.

(2)$x>0$のとき$\displaystyle \log (1+x)>x-\frac{x^2}{2}$であることを示せ.
大阪府立大学 公立 大阪府立大学 2014年 第3問
$a,\ b$を定数とし,$2$次の正方行列$A,\ X,\ Y$は
\[ A=aX+bY,\quad X+Y=E,\quad XY=O \]
をみたすとする.ここで,$E$と$O$はそれぞれ$2$次の単位行列と零行列を表す.このとき,$X+Y=E$の両辺に左から$X$を掛けると$X^2=X$が成り立つことがわかる.

(1)$Y^2=Y,\ YX=O$が成り立つことを示せ.
(2)$A$が$E$の定数倍ではないとき,$A-aE$と$A-bE$はともに逆行列をもたないことを示せ.
(3)$A=\left( \begin{array}{cc}
-1 & 2 \\
6 & 3
\end{array} \right)$のとき,$a,\ b (a<b)$および$X,\ Y$を求めよ.
大阪府立大学 公立 大阪府立大学 2014年 第6問
数列$\{a_n\}$の初項$a_1$から第$n$項$a_n$までの和$S_n$が
\[ S_n=2a_n+n^2-n \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすとする.

(1)$a_1$と$a_2$を求めよ.
(2)$a_{n+1}-2a_n$を$n$の式で表せ.
(3)$b_n=a_{n+1}-a_n-2 (n=1,\ 2,\ 3,\ \cdots)$とおくと,数列$\{b_n\}$は等比数列となることを示し,初項$b_1$と公比を求めよ.
(4)$a_n$を$n$の式で表せ.
大阪府立大学 公立 大阪府立大学 2014年 第4問
以下の問いに答えよ.

(1)関数$f(x)=|x|$が$x=0$において微分可能でないことを微分の定義に基づいて示せ.
(2)$y=x |x|$のグラフの概形を描け.
(3)$m$は自然数とする.関数$g(x)=x^m |x|$が$x=0$において微分可能であるか微分可能でないかを理由をつけて答えよ.
大阪府立大学 公立 大阪府立大学 2014年 第5問
$0<x \leqq 2\pi$において定義された関数$\displaystyle h(x)=\frac{\sin x}{x}$について,以下の問いに答えよ.

(1)$h(x)$の最小値を与える$x$がただ一つ存在することを示せ.
(2)$h(x)$の最小値を与える$x$の値を$b$とおく.次の定積分を求めよ.
\[ \int_\pi^b x^2h(x) \, dx \]
(3)$b$は$\displaystyle \frac{17}{12} \pi<b<\frac{3}{2} \pi$をみたすことを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。