タグ「証明」の検索結果

75ページ目:全1924問中741問~750問を表示)
長崎大学 国立 長崎大学 2014年 第1問
$k$を実数とし,円$x^2+y^2=1$と直線$x+2y=k$が異なる$2$点で交わるものとする.その$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.次の問いに答えよ.

(1)$k$の値の範囲を求めよ.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を通る円の中心は直線$y=2x$上にあることを示せ.
(3)上の$(2)$の円の中心を$(a,\ 2a)$,半径を$r$とする.$r^2$を$a$と$k$で表せ.
(4)点$\mathrm{R}$の座標を$(2,\ 1)$とする.$k$の値が$(1)$で求めた範囲を動くとき,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円の中心の$x$座標の範囲を求めよ.
長崎大学 国立 長崎大学 2014年 第1問
$k$を実数とし,円$x^2+y^2=1$と直線$x+2y=k$が異なる$2$点で交わるものとする.その$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.次の問いに答えよ.

(1)$k$の値の範囲を求めよ.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を通る円の中心は直線$y=2x$上にあることを示せ.
(3)上の$(2)$の円の中心を$(a,\ 2a)$,半径を$r$とする.$r^2$を$a$と$k$で表せ.
(4)点$\mathrm{R}$の座標を$(2,\ 1)$とする.$k$の値が$(1)$で求めた範囲を動くとき,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円の中心の$x$座標の範囲を求めよ.
愛媛大学 国立 愛媛大学 2014年 第3問
$n$は自然数,$m$は整数,$k,\ \alpha,\ \beta$は実数とする.

(1)$\alpha \geqq 1$,$\beta \geqq 1$のとき,$\alpha\beta \geqq \alpha+\beta-1$が成り立つことを示せ.
(2)$x$に関する$2$次方程式$x^2-mx+k=0$の$2$つの解を$p,\ q$とする.$p$が整数ならば,$q$と$k$も整数であることを示せ.
(3)$x$に関する$2$次方程式$x^2-n^2x+n=0$は,整数の解をもたないことを示せ.
(4)$x$に関する$2$次方程式$x^2-(n-2)^2x+n=0$が整数の解をもつとき,$n$の値とその解をすべて求めよ.
愛媛大学 国立 愛媛大学 2014年 第2問
$n$は自然数,$m$は整数,$k,\ \alpha,\ \beta$は実数とする.

(1)$\alpha \geqq 1$,$\beta \geqq 1$のとき,$\alpha\beta \geqq \alpha+\beta-1$が成り立つことを示せ.
(2)$x$に関する$2$次方程式$x^2-mx+k=0$の$2$つの解を$p,\ q$とする.$p$が整数ならば,$q$と$k$も整数であることを示せ.
(3)$x$に関する$2$次方程式$x^2-n^2x+n=0$は,整数の解をもたないことを示せ.
(4)$x$に関する$2$次方程式$x^2-(n-2)^2x+n=0$が整数の解をもつとき,$n$の値とその解をすべて求めよ.
愛媛大学 国立 愛媛大学 2014年 第4問
$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$,$O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$とし,$t$は実数とする.$A$は,$A^3=E$を満たす$2$次の正方行列とする.

(1)$(A-tE)(A^2+tA+t^2E)$を$t$と$E$を用いて表せ.
(2)$t \neq 1$のとき$A-tE$は逆行列をもつことを示せ.
(3)次の$3$つの命題を証明せよ.

(i) $A=E$ならば,$A^2+A+E \neq O$である.
(ii) $A^2+A+E \neq O$ならば,$A-E$は逆行列をもたない.
(iii) $A-E$が逆行列をもたないならば,$A=E$である.
愛媛大学 国立 愛媛大学 2014年 第5問
$n$は自然数,$p_0$,$p_1$,$\cdots$,$p_n$は$p_0>0$,$\cdots$,$p_n>0$かつ$p_0+p_1+\cdots+p_n=1$を満たす定数とする.ポイント$0,\ 1,\ 2,\ \cdots,\ n-1,\ n$が,それぞれ$p_0,\ p_1,\ p_2,\ \cdots,\ p_{n-1},\ p_n$の確率で得られる試行$T$を考える.試行$T$を$1$回行って得られるポイントの期待値を$a$とし,$A=[a]+1$とする.ただし,実数$x$に対して$[x]$は$x$を超えない最大の整数を表す.競技者は,試行$T$を下記の各設問のルールに従って何回か行う.

(1)$k$を$1 \leqq k \leqq n$を満たす整数とする.競技者は,試行$T$を以下のルールに従って最大$2$回まで行う.

\mon[$①$] 試行$T$を$1$回行い,もしポイントが$k$以上であれば$2$回目の試行を行わず,このポイントを賞金とする.
\mon[$②$] $1$回目のポイントが$k$未満であれば$2$回目の試行$T$を行う.このとき,$1$回目のポイントは無効とし,$2$回目のポイントを賞金とする.
このとき賞金の期待値を$b_k$とする.$b_k$を求めよ.

(2)$(1)$の期待値$b_k$は$k$が$A$のとき最大となることを示せ.
(3)$m$を$1 \leqq m \leqq n$を満たす整数とする.競技者は,試行$T$を以下のルールに従って最大$3$回まで行う.

\mon[$①$] 試行$T$を$1$回行い,もしポイントが$m$以上であれば$2$回目以降の試行を行わず,このポイントを賞金とする.
\mon[$②$] $1$回目のポイントが$m$未満であれば$2$回目の試行$T$を行う.$2$回目のポイントが$A$以上であれば$3$回目の試行を行わない.このとき,$1$回目のポイントは無効とし,$2$回目のポイントを賞金とする.
\mon[$③$] $2$回目のポイントが$A$未満であれば$3$回目の試行$T$を行う.このとき,$1$回目,$2$回目のポイントは無効とし,$3$回目のポイントを賞金とする.
このとき賞金の期待値を$c_m$とする.$c_m$を求めよ.

(4)$(3)$の期待値$c_m$は$m$が$B=[b_A]+1$のとき最大となり,$c_B \geqq b_A$であることを示せ.ただし,$b_A$は$(1)$で求めた期待値$b_k$の$k=A$のときの値である.
(5)$n=5$とし,試行$T$として,$5$枚の硬貨を同時に投げ,表の出た枚数をポイントとする試行を考える.また,$b_k$,$c_m$は上記で定義したものとする.

(i) $p_0$,$p_1$,$p_2$,$p_3$,$p_4$,$p_5$,$a$を求めよ.
(ii) $(1)$のように最大$2$回試行を行う場合,$b_k$の最大値を求めよ.
(iii) $(3)$のように最大$3$回試行を行う場合,$c_m$の最大値を求めよ.
愛媛大学 国立 愛媛大学 2014年 第5問
$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$,$O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$とし,$t$は実数とする.$A$は,$A^3=E$を満たす$2$次の正方行列とする.

(1)$(A-tE)(A^2+tA+t^2E)$を$t$と$E$を用いて表せ.
(2)$t \neq 1$のとき$A-tE$は逆行列をもつことを示せ.
(3)次の$3$つの命題を証明せよ.

(i) $A=E$ならば,$A^2+A+E \neq O$である.
(ii) $A^2+A+E \neq O$ならば,$A-E$は逆行列をもたない.
(iii) $A-E$が逆行列をもたないならば,$A=E$である.
千葉大学 国立 千葉大学 2014年 第3問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第3問
$p$は奇数である素数とし,$N=(p+1)(p+3)(p+5)$とおく.

(1)$N$は$48$の倍数であることを示せ.
(2)$N$が$144$の倍数になるような$p$の値を,小さい順に$5$つ求めよ.
千葉大学 国立 千葉大学 2014年 第5問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。