タグ「証明」の検索結果

70ページ目:全1924問中691問~700問を表示)
九州工業大学 国立 九州工業大学 2014年 第3問
$\displaystyle f(x)=\frac{\sin x-x \cos x}{\displaystyle\frac{2}{\pi}-\cos x}$,$\displaystyle g(x)=\frac{1}{2}x+\frac{\pi}{4}$とする.$\displaystyle \frac{\pi}{2}<x<\pi$のとき,以下の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$f^\prime(x)>0$を示せ.
(3)$\displaystyle \frac{\pi}{2}<f(x)<\pi$を示せ.
(4)$f(x)<g(x)$を示せ.
宮崎大学 国立 宮崎大学 2014年 第3問
次の各問に答えよ.

(1)下図のように半径$r_1$の円$\mathrm{O}_1$と半径$r_2$の円$\mathrm{O}_2$が外接している.円$\mathrm{O}_1$と円$\mathrm{O}_2$の接点を$\mathrm{P}$とする.円$\mathrm{O}_1$の周上に点$\mathrm{P}$と異なる点$\mathrm{A}$をとり,線分$\mathrm{AP}$の延長と円$\mathrm{O}_2$の交点を$\mathrm{B}$とする.また,円$\mathrm{O}_1$の周上に点$\mathrm{P}$,点$\mathrm{A}$と異なる点$\mathrm{C}$をとり,線分$\mathrm{CP}$の延長と円$\mathrm{O}_2$の交点を$\mathrm{D}$とする.このとき,次の$(ⅰ)$,$(ⅱ)$に答えよ.
(図は省略)

(i) 点$\mathrm{P}$における円$\mathrm{O}_1$の接線を利用して,$\mathrm{AC} \para \mathrm{BD}$であることを示せ.
(ii) 円$\mathrm{O}_1$の中心と$\mathrm{O}_2$の中心を結ぶ直線を利用して,点$\mathrm{P}$は線分$\mathrm{AB}$を$r_1:r_2$に内分することを示せ.

(2)下図のように半径$3$の円$C_1$,半径$4$の円$C_2$,半径$5$の円$C_3$が互いに外接している.円$C_2$と円$C_3$の接点を$\mathrm{J}$,円$C_3$と円$C_1$の接点を$\mathrm{K}$,円$C_1$と円$C_2$の接点を$\mathrm{L}$とする.線分$\mathrm{JL}$の延長と円$C_1$の交点を$\mathrm{M}$とし,線分$\mathrm{JK}$の延長と円$C_1$の交点を$\mathrm{N}$とする.このとき,四角形$\mathrm{KLMN}$の面積は$\triangle \mathrm{JLK}$の面積の何倍であるかを求めよ.
(図は省略)
高知大学 国立 高知大学 2014年 第4問
$f(x)=x(x-1)(x+1)$とおく.このとき,次の問いに答えよ.

(1)関数$y=f(x)$が極大,極小になるときの$x$と,その極大値,極小値を求めよ.
(2)$y=f(x)$のグラフの概形をかけ.
(3)$x$が$\displaystyle |x-1|<\frac{1}{2}$をみたすとき,点$(x,\ f(x))$は点$(1,\ 0)$を中心とする半径$3$の円の内部に含まれることを示せ.
(4)$1$以下の正の数$r$に対して,$x$が$|x-1|<r$の範囲を動くとき,点$(x,\ f(x))$は点$(1,\ 0)$を中心とする半径$10r$の円の内部に含まれることを示せ.
富山大学 国立 富山大学 2014年 第1問
自然数$n$に対して,$\displaystyle f_n(x)=\int_0^x \frac{dt}{(t^2+1)^n}$とおく.このとき,次の問いに答えよ.

(1)$f_1(1)$を求めよ.
(2)$\displaystyle g(x)=f_1 \left( \frac{1}{x} \right)$とおく.$g^\prime(x)$を求め,$x>0$のとき
\[ f_1(x)+g(x)=\frac{\pi}{2} \]
が成り立つことを示せ.
(3)$\displaystyle \lim_{x \to \infty}f_1(x)$を求めよ.
(4)部分積分法を用いて,
\[ f_n(x)=\frac{x}{(x^2+1)^n}+2nf_n(x)-2nf_{n+1}(x) \]
が成り立つことを示せ.
(5)$\displaystyle \lim_{x \to \infty} f_n(x)=\frac{\comb{2n-3}{n-1}}{{2}^{2n-2}} \pi (n \geqq 2)$であることを示せ.ただし,$\displaystyle \comb{m}{k}=\frac{m!}{(m-k)!k!}$とする.
富山大学 国立 富山大学 2014年 第2問
微分可能な関数$f(x)$と$2$つの定数$p,\ q$が次の条件を満たすとする.

「すべての実数$x,\ y$に対して,$f(x+y)=pf(x)+qf(y)$が成り立つ」
このとき,次の問いに答えよ.

(1)$f(0) \neq 0$とする.

(i) $p+q=1$であることを示せ.
(ii) $f(x)$は定数関数であることを示せ.

(2)$f(0)=0$で$f(x)$が定数関数でないとする.

(i) $p=1$であることを示せ.
(ii) $a=f^\prime(0)$とするとき,$f(x)$を$a$を用いて表せ.
富山大学 国立 富山大学 2014年 第3問
実数$a,\ b,\ c (b \neq 0)$に対して,次の問いに答えよ.

(1)$2$次方程式$x^2-(a+c)x+ac-b^2=0$は異なる$2$つの実数解をもつことを示せ.
(2)$(1)$の$2$つの実数解を$\alpha,\ \beta (\alpha<\beta)$とする.$x$についての恒等式
\[ (x+p)(x-\alpha)-(x+q)(x-\beta)=1 \]
が成り立つとき,定数$p,\ q$を$\alpha,\ \beta$を用いて表せ.
(3)$2$次の正方行列$A=\left( \begin{array}{cc}
a & b \\
b & c
\end{array} \right)$と$(2)$の$\alpha,\ p$に対して,$B=(A+pE)(A-\alpha E)$とおく.このとき,$B^2=B$であることを示せ.ただし,$E$は$2$次の単位行列である.
室蘭工業大学 国立 室蘭工業大学 2014年 第2問
$a$を定数とし,$e$を自然対数の底とする.曲線$y=xe^{-x^2}$および直線$y=ax$をそれぞれ$C,\ L$とする.$C$と$L$は原点$(0,\ 0)$以外に交点をもつ.

(1)$a$の値の範囲を求めよ.また,$C$と$L$の交点でその$x$座標が正であるものを$a$を用いて表せ.
(2)$x \geqq 0$において$C$と$L$で囲まれた部分の面積を$S(a)$とするとき,$S(a)$を求めよ.
(3)$\displaystyle S(a)<\frac{1}{2}$であることを示せ.
福井大学 国立 福井大学 2014年 第2問
$\triangle \mathrm{OAB}$は$\mathrm{OA}=\mathrm{OB}=1$を満たす二等辺三角形とする.$t$を$\displaystyle \frac{1}{2}<t<1$を満たす定数とし,辺$\mathrm{AB}$を$t:1$に内分する点を$\mathrm{M}$,$1:t$に内分する点を$\mathrm{N}$としたとき,$\angle \mathrm{AOB}=3 \angle \mathrm{AOM}$が成り立つとする.このとき,次の問いに答えよ.

(1)$\displaystyle \mathrm{ON}=\frac{1-t}{t}$であることを証明せよ.
(2)$x=\cos \angle \mathrm{AOB}$,$y=\cos \angle \mathrm{AOM}$とするとき,$x,\ y$を$t$を用いて表せ.
(3)$x=-y^2$が成り立つときの,$t$の値と辺$\mathrm{AB}$の長さを求めよ.
福井大学 国立 福井大学 2014年 第4問
以下の問いに答えよ.

(1)$p>1$,$q>1$のとき,不等式$p+q<pq+1$を証明せよ.
(2)$a>1$,$b>1$のとき,不等式$\sqrt{a+b-1}<\sqrt{a}+\sqrt{b}-1$を証明せよ.
(3)$a>1$,$b>1$,$c>1$のとき,不等式$\sqrt{a+b+c-2}<\sqrt{a}+\sqrt{b}+\sqrt{c}-2$を証明せよ.
福井大学 国立 福井大学 2014年 第4問
$f(x)=3 \sin x$,$g(x)=x(2+\cos x)$とするとき,以下の問いに答えよ.

(1)$0<x<\pi$のとき,$0<f(x)<g(x)$が成り立つことを証明せよ.
(2)$0 \leqq x \leqq \pi$の範囲で,$2$つの曲線$y=f(x)$,$y=g(x)$と直線$x=\pi$によって囲まれた図形の面積を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。