タグ「証明」の検索結果

67ページ目:全1924問中661問~670問を表示)
山梨大学 国立 山梨大学 2014年 第2問
実数を成分とする$2$次正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が,実数$k$に対し,$A^2-kA=(k-3)E$を満たすとする.ただし,$E$は$2$次の単位行列である.

(1)$b \neq 0$または$c \neq 0$のとき,$a+d$および$ad-bc$を$k$を用いた式で表せ.
(2)実数$k$が$A \left( \begin{array}{c}
1 \\
k
\end{array} \right)=\left( \begin{array}{c}
1 \\
k
\end{array} \right)$を満たすとき,$k$の値を求めよ.
(3)$k$を定数として,$bc$が最大となるような$a,\ d$とそのときの$bc$を$k$を用いた式で表せ.また,そのような行列$A$の例を$k$を用いて$1$つあげよ.
(4)$k$を定数として,行列$A$は$bc$が最大となる行列とする.行列$A$で表される$1$次変換が,直線$y=kx$上の各点$\mathrm{P}$を$\mathrm{P}$自身に移すとすると,$A=E$となることを示せ.
山梨大学 国立 山梨大学 2014年 第5問
曲線$C$は媒介変数$t (0 \leqq t \leqq 2\pi)$によって,$x=t-\sin t$,$y=1-\cos t$と表される.

(1)$x$は$t$の関数として増加関数であることを示せ.
(2)$0<t<2\pi$のとき,$\displaystyle \frac{dy}{dx}$を$t$を用いた式で表せ.また,$y$の$x$に関する増減を調べよ.
(3)不定積分$\displaystyle \int \cos^2 t \, dt$および$\displaystyle \int \cos^3 t \, dt$を求めよ.
(4)曲線$C$と$x$軸で囲まれた図形を$x$軸の周りに$1$回転させてできる回転体の体積を求めよ.
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
大分大学 国立 大分大学 2014年 第1問
次の各問いに答えなさい.

(1)$n$本中$k$本の当たりが入ったクジを$n$人で順番に引く.引いたクジは元に戻さないとして,$i$番目にクジを引く人の当たる確率が$\displaystyle \frac{k}{n}$であることを示しなさい.ただし,$0<k<n$とする.
(2)関数$y_1=\sin x$と$y_2=2 \sin (a-x)$について,$y=y_1+y_2$の最大値が$\sqrt{7}$になるとき,定数$a$の値を求めなさい.
(3)放物線$y=ax^2$と直線$y=bx$で囲まれる部分の面積を$2$等分する直線$x=p$を求めなさい.ただし,$a,\ b>0$とする.
大分大学 国立 大分大学 2014年 第2問
数列の和について次の一連の問いに答えなさい.

(1)$\displaystyle \sum_{k=1}^n k=\frac{1}{2}n(n+1)$を示しなさい.
(2)多項式$(k+1)^3-k^3$の展開を利用して$\displaystyle \sum_{k=1}^n k^2=\frac{1}{6}n(n+1)(2n+1)$を示しなさい.
(3)$\displaystyle \sum_{k=1}^n k^3=\frac{1}{4}n^2(n+1)^2$を示しなさい.
(4)$\displaystyle \sum_{k=1}^n k^4$を求めなさい.結果は因数分解すること.
大分大学 国立 大分大学 2014年 第3問
次の一連の問いに答えなさい.

(1)自然数$m$に対して,$x>0$のとき$\displaystyle e^x>\frac{x^m}{m!}$であることを示しなさい.
(2)自然数$n$に対して,$\displaystyle \lim_{x \to \infty} \frac{x^n}{e^x}=0$を示しなさい.
(3)自然数$n$に対して$\displaystyle \Gamma_K(n)=\int_0^K x^{n-1}e^{-x} \, dx$とするとき,$\displaystyle \lim_{K \to \infty} \Gamma_K(n)$を求めなさい.
九州工業大学 国立 九州工業大学 2014年 第4問
関数$\displaystyle f(x)=-\tan x \left( 0 \leqq x \leqq \frac{\pi}{4} \right)$,$\displaystyle g(x)=\sin 2x \left( 0 \leqq x \leqq \frac{\pi}{4} \right)$について,次に答えよ.

(1)不定積分$\displaystyle \int \tan x \, dx$,$\displaystyle \int \tan^2 x \, dx$を求めよ.
(2)$b>0$とする.曲線$y=g(x)$および$3$直線$y=-b$,$x=0$,$\displaystyle x=\frac{\pi}{4}$で囲まれた部分を直線$y=-b$のまわりに$1$回転してできる立体の体積$V_1$を$b$を用いて表せ.
(3)$\displaystyle 0 \leqq x \leqq \frac{\pi}{4}$のとき,不等式$f(x)+g(x) \geqq 0$を示せ.
(4)$2$曲線$y=f(x)$,$y=g(x)$および直線$\displaystyle x=\frac{\pi}{4}$で囲まれた部分を直線$\displaystyle y=-\frac{1}{\sqrt{3}}$のまわりに$1$回転してできる立体の体積$V_2$を求めよ.
岐阜大学 国立 岐阜大学 2014年 第5問
数列$\{a_n\}$を
\[ a_1=\frac{3}{4},\quad a_{n+1}=1-\frac{1}{4a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.以下の問に答えよ.

(1)$a_2,\ a_3,\ a_4,\ a_5,\ a_6$を求めよ.また,それより一般項$a_n$を推定せよ.
(2)数学的帰納法により,$(1)$の一般項の推定が正しいことを証明せよ.
(3)$n$を正の整数とする.すべての実数$x$に対して,不等式
\[ a_nx^2+x+1 \geqq a_{n+1} \]
が成り立つことを示せ.
(4)$n$を正の整数とする.すべての実数$x$に対して,不等式
\[ x^{2n}+x^{2n-1}+x^{2n-2}+\cdots +x^2+x+1 \geqq a_n \]
が成り立つことを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。