タグ「証明」の検索結果

66ページ目:全1924問中651問~660問を表示)
大阪教育大学 国立 大阪教育大学 2014年 第2問
座標平面上の原点を$\mathrm{O}$とし,$3$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(1,\ 1)$,$\mathrm{C}(1,\ 0)$を考える.$x$軸上に点$\mathrm{P}$をとり,線分$\mathrm{AP}$の垂直二等分線を$\ell$とする.点$\mathrm{P}$を通り$x$軸に垂直な直線と$\ell$との交点を$\mathrm{Q}$とする.

(1)$\mathrm{AQ}=\mathrm{QP}$であることを証明せよ.
(2)点$\mathrm{P}$が$x$軸上を動くとき,点$\mathrm{Q}$の軌跡はどのような曲線を描くか図示せよ.
(3)点$\mathrm{P}$は$x$軸の閉区間$[0,\ 1]$にあるとする.このとき,直線$\ell$が正方形$\mathrm{ABCO}$を二つの部分に切る.そのうちの点$\mathrm{C}$を含む部分の面積を$S$とする.$S$の最大値と最小値を求めよ.また,そのときの点$\mathrm{P}$の座標を求めよ.
岐阜大学 国立 岐阜大学 2014年 第5問
$n$を正の整数とし,$x \geqq 0$とする.以下の問に答えよ.

(1)$\displaystyle r_n(x)=e^x-\left( 1+x+\frac{1}{2!}x^2+\cdots +\frac{1}{n!}x^n \right)$とする.$r_n(x) \geqq 0$を$n$に関する数学的帰納法を使って示せ.
(2)$\displaystyle \lim_{x \to \infty}x^n e^{-x}=0$を示せ.
(3)$t \geqq 0$とし,$\displaystyle f(t)=\int_0^t x^n e^{-x} \, dx$とする.$\displaystyle \lim_{t \to \infty}f(t)$を求めよ.
富山大学 国立 富山大学 2014年 第1問
次の問いに答えよ.

(1)$x>0$のとき,不等式$\displaystyle \log x>-\frac{1}{\sqrt{x}}$が成り立つことを示せ.
(2)$f(x)=x^2 \log x (x>0)$とおく.$\displaystyle \lim_{x \to +0}f(x)=0$を示せ.
(3)$f(x)$の増減および凹凸を調べ,$y=f(x)$のグラフの概形をかけ.
(4)$\displaystyle I(t)=\int_t^2 f(x) \, dx (t>0)$とおく.このとき,$\displaystyle \lim_{t \to +0}I(t)$を求めよ.
富山大学 国立 富山大学 2014年 第2問
点$\mathrm{P}_0$を$xy$平面の原点とし,点$\mathrm{P}_1$の座標を$(1,\ 0)$とする.点$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\cdots$を次のように定める.$n=1,\ 2,\ 3,\ \cdots$に対して,点$\mathrm{P}_{n-1}$を中心として点$\mathrm{P}_n$を反時計回りに$\theta (0<\theta<\pi)$だけ回転させた点を$\mathrm{Q}_n$とし,点$\mathrm{P}_{n+1}$を$\overrightarrow{\mathrm{P}_{n-1} \mathrm{Q}_n}=\overrightarrow{\mathrm{P}_n \mathrm{P}_{n+1}}$となるようにとる.このとき,次の問いに答えよ.

(1)$k=0,\ 1,\ 2,\ \cdots$に対して,

$\displaystyle \sin \frac{\theta}{2} \cos k \theta=\frac{1}{2} \left\{ -\sin \left( \frac{2k-1}{2} \theta \right)+\sin \left( \frac{2k+1}{2} \theta \right) \right\}$

$\displaystyle \sin \frac{\theta}{2} \sin k \theta=\frac{1}{2} \left\{ \cos \left( \frac{2k-1}{2} \theta \right)-\cos \left( \frac{2k+1}{2} \theta \right) \right\}$

が成り立つことを示せ.
(2)$n=1,\ 2,\ 3,\ \cdots$に対して,

$\displaystyle 1+\cos \theta+\cdots +\cos n\theta=\frac{1}{2 \sin \displaystyle\frac{\theta}{2}} \left\{ \sin \left( \displaystyle\frac{2n+1}{2} \theta \right)+\sin \frac{\theta}{2} \right\}$

$\displaystyle \sin \theta+\cdots +\sin n\theta=\frac{1}{2 \sin \displaystyle\frac{\theta}{2}} \left\{ -\cos \left( \displaystyle\frac{2n+1}{2} \theta \right)+\cos \frac{\theta}{2} \right\}$

が成り立つことを示せ.
(3)点$\mathrm{P}_n$の座標を$(x_n,\ y_n)$とおくとき,$x_n$および$y_n$を求めよ.
(4)すべての点$\mathrm{P}_n (n=0,\ 1,\ 2,\ \cdots)$を通る円の方程式を求めよ.
富山大学 国立 富山大学 2014年 第3問
次の問いに答えよ.

(1)$x>0$のとき,不等式$\displaystyle \log x>-\frac{1}{\sqrt{x}}$が成り立つことを示せ.
(2)$f(x)=x^2 \log x (x>0)$とおく.$\displaystyle \lim_{x \to +0}f(x)=0$を示せ.
(3)$f(x)$の増減および凹凸を調べ,$y=f(x)$のグラフの概形をかけ.
(4)$\displaystyle I(t)=\int_t^2 f(x) \, dx (t>0)$とおく.このとき,$\displaystyle \lim_{t \to +0}I(t)$を求めよ.
富山大学 国立 富山大学 2014年 第2問
次の問いに答えよ.

(1)$2$つの実数$a,\ b$がともに$2$より大きいための必要十分条件は,$ab-2(a+b)+4>0$かつ$a+b>4$であることを示せ.
(2)定数$k$に対して,方程式
\[ (\log_2x)^2-(k+2) \log_2x-k+17=0 \]
を考える.

(i) 方程式が実数解$\alpha,\ \beta$をもつとき,$\log_2(\alpha\beta)$と$(\log_2 \alpha)(\log_2 \beta)$を$k$を用いて表せ.
(ii) 方程式が$4$より大きい異なる$2$つの実数解をもつような$k$の値の範囲を求めよ.
富山大学 国立 富山大学 2014年 第2問
$p$を素数とするとき,次の問いに答えよ.

(1)自然数$k$が$1 \leqq k \leqq p-1$を満たすとき,$\comb{p}{k}$は$p$で割り切れることを示せ.ただし,$\comb{p}{k}$は$p$個のものから$k$個取った組合せの総数である.
(2)$n$を自然数とするとき,$n$に関する数学的帰納法を用いて,$n^p-n$は$p$で割り切れることを示せ.
(3)$n$が$p$の倍数でないとき,$n^{p-1}-1$は$p$で割り切れることを示せ.
富山大学 国立 富山大学 2014年 第3問
実数を成分とする$2$次の正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$に対して,$T(A)=a+d$,$\Delta(A)=ad-bc$と定める.このとき,次の問いに答えよ.ただし,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$,$O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$とする.

(1)等式$A^2-T(A)A+\Delta(A)E=O$が成り立つこと(ハミルトン・ケーリーの定理)を示せ.
(2)実数を成分とする$2$次の正方行列$X,\ Y$が$XY-YX=\left( \begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right)$を満たすとし,$\alpha=T(X)$,$\beta=\Delta(X)$とおく.

(i) $X^2Y-YX^2$を$\alpha$を用いて表せ.
(ii) $(X^2Y-YX^2)^2=E$,$X^4+X^2+E=O$が成り立つとき,$\alpha,\ \beta$の値を求めよ.
岐阜大学 国立 岐阜大学 2014年 第4問
次の問に答えよ.

(1)$a,\ b>0$とする.このとき
\[ \frac{a+b}{2} \geqq \sqrt{ab} \]
であることを証明せよ.また,等号が成立するのは$a=b$の場合だけであることを示せ.
(2)$a,\ b,\ c>0$とする.このとき
\[ (a+b)(b+c)(c+a) \geqq 8abc \]
であることを証明せよ.また,等号が成立するのはどのような場合か述べよ.
(3)$\alpha,\ \beta,\ \gamma$を三角形の$3$辺の長さとする.このとき
\[ \alpha\beta\gamma \geqq (-\alpha+\beta+\gamma)(\alpha-\beta+\gamma)(\alpha+\beta-\gamma) \]
であることを証明せよ.また,等号が成立するのは正三角形の場合だけであることを示せ.
(4)$\alpha,\ \beta,\ \gamma$を三角形の$3$辺の長さとする.このとき
\[ \frac{\alpha}{-\alpha+\beta+\gamma}+\frac{\beta}{\alpha-\beta+\gamma}+\frac{\gamma}{\alpha+\beta-\gamma} \geqq 3 \]
であることを証明せよ.また,等号が成立するのは正三角形の場合だけであることを示せ.
富山大学 国立 富山大学 2014年 第3問
関数$f(x)$と$g(x)$を
\[ f(x)=\left\{ \begin{array}{ll}
|x \log \abs{x|} & (x \neq 0) \phantom{\frac{[ ]}{2}} \\
0 \phantom{\frac{[ ]}{2}} & (x=0)
\end{array} \right. \]
\[ g(x)=-x^2+1 \]
により定める.このとき,次の問いに答えよ.

(1)$x>0$のとき,不等式$\displaystyle \log x>-\frac{1}{\sqrt{x}}$が成り立つことを示し,これを用いて$f(x)$は$x=0$で連続であることを示せ.
(2)$f(x)$の極値を求め,$y=f(x)$のグラフの概形をかけ.
(3)方程式$f(x)=g(x)$の解は$x=-1,\ 1$のみであることを示せ.
(4)$0<r<1$とする.曲線$y=f(x)$と曲線$y=g(x)$によって囲まれた図形のうち,$x \geqq r$の範囲の部分の面積を$S(r)$とおく.このとき,$\displaystyle \lim_{r \to +0} S(r)$を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。