タグ「証明」の検索結果

64ページ目:全1924問中631問~640問を表示)
弘前大学 国立 弘前大学 2014年 第2問
$1$辺の長さが$1$の正四面体$\mathrm{ABCD}$に対し,辺$\mathrm{AB}$の中点を$\mathrm{E}$,辺$\mathrm{AC}$の中点を$\mathrm{F}$,辺$\mathrm{BD}$を$t:(1-t)$の比に内分する点を$\mathrm{G}$,辺$\mathrm{CD}$を$u:(1-u)$の比に内分する点を$\mathrm{H}$とする.ただし,$0<t<1$,$0<u<1$とする.次の問いに答えよ.

(1)$4$点$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$が同一平面上にあるならば,$t=u$が成り立つことを示せ.
(2)$t=u$のとき,$\mathrm{EF}^2+\mathrm{FH}^2+\mathrm{HG}^2+\mathrm{GE}^2$の値の範囲を求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第1問
次の各問いに答えよ.

(1)三角形$\mathrm{ABC}$において辺$\mathrm{AB}$上に点$\mathrm{D}$を,辺$\mathrm{AC}$上に点$\mathrm{E}$をとり,線分$\mathrm{BE}$と線分$\mathrm{CD}$の交点を$\mathrm{F}$とする.点$\mathrm{A}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が同一円周上にあり,さらに角のあいだに
\[ \angle \mathrm{AEB}=2 \angle \mathrm{ABE}=4 \angle \mathrm{ACD} \]
という関係が成り立つとき,$\angle \mathrm{BAC}$の値を求めよ.
(2)$4$個のさいころを同時に投げるとき,$3$の倍数の目のみが出る確率を求めよ.
(3)正の実数$x,\ y$に関する次の各命題の真偽を述べよ.また,真ならば証明し,偽ならば反例をあげよ.

(i) $x$が無理数かつ$y$が有理数ならば,その和$x+y$は無理数である.
(ii) $x$が無理数かつ$y$が無理数ならば,その和$x+y$は無理数である.
鹿児島大学 国立 鹿児島大学 2014年 第5問
次の各問いに答えよ.

(1)座標平面上での原点を中心とする${150}^\circ$の回転移動を表す行列を$P$とする.点$(x,\ y)$が$P$の表す移動によって,点$(2,\ 4)$に移ったとする.このとき,点$(x,\ y)$を求めよ.
(2)$(1)$で与えられた行列$P$を考える.$P^n=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$を満たす最小の自然数$n$を求めよ.
(3)以下の各命題の反例をあげよ.また,反例になっていることを示せ.ただし,$X,\ Y$は$2$次の正方行列とする.

(i) $XY=YX$が成立する.
(ii) $XY=O$ならば,$X=O$または$Y=O$である.ただし,$O$は$2$次の零行列を表す.
(iii) $A$を逆行列$A^{-1}$をもつ$2$次の正方行列とする.このとき,$AX=Y$ならば,$X=YA^{-1}$である.
琉球大学 国立 琉球大学 2014年 第3問
整数$m,\ n$は$m \geqq 1$,$n \geqq 2$をみたすとする.次の問いに答えよ.

(1)$x>0$のとき,$y=\log x$の第$1$次導関数$y^\prime$と第$2$次導関数$y^{\prime\prime}$を求めよ.
(2)座標平面上の$3$点$\mathrm{A}(m,\ \log m)$,$\mathrm{B}(m+1,\ \log m)$,$\mathrm{C}(m+1,\ \log (m+1))$を頂点とする三角形の面積を$S_m$とする.$S_m$を$m$を用いて表せ.
(3)$\displaystyle f(m)=\log m+S_m-\int_m^{m+1} \log x \, dx$とおく.$f(m)<0$が成り立つことを,$y=\log x$のグラフを用いて説明せよ.
(4)$f(1)+f(2)+\cdots +f(n-1)<0$であることを用いて,不等式
\[ \log 1+\log 2+\cdots +\log (n-1)<n \log n-n+1-\frac{1}{2} \log n \]
を証明せよ.
(5)不等式$\displaystyle n!<e \sqrt{n} \left( \frac{n}{e} \right)^n$を証明せよ.ただし,$e$は自然対数の底である.
琉球大学 国立 琉球大学 2014年 第4問
$1$個のさいころを繰り返し投げて景品を当てるゲームを行う.景品は$\mathrm{A}$と$\mathrm{B}$の$2$種類あり,次の規則にしたがって景品をもらえるとする.
\begin{itemize}
出た目の数が$6$のときは,景品$\mathrm{A}$をもらえる.
出た目の数が$4,\ 5$のときは,景品$\mathrm{B}$をもらえる.
出た目の数が$1,\ 2,\ 3$のときは,景品はもらえない.
景品$\mathrm{A}$と景品$\mathrm{B}$の$2$種類とももらうことができたらゲームは終了する.
\end{itemize}
ちょうど$n$回さいころを投げ終わったところでゲームが終了する確率を$p_n$とする.次の問いに答えよ.

(1)$p_2$の値を求めよ.
(2)$n$を$2$以上の整数とする.$p_n$を$n$を用いて表せ.
(3)$n$を$2$以上の整数とする.不等式
\[ p_{n+1}-p_n<\frac{2}{3}(p_n-p_{n-1}) \]
を示せ.ただし,$p_1=0$とする.
鳴門教育大学 国立 鳴門教育大学 2014年 第3問
$\triangle \mathrm{ABC}$の内心を$\mathrm{I}$,外心を$\mathrm{O}$,内接円の半径を$r$,外接円の半径を$R$とするとき,次の問いに答えなさい.

(1)$\mathrm{I}$と$\mathrm{O}$が一致するとき,$R=2r$となることを証明しなさい.
(2)$\angle \mathrm{ABC}$と$\angle \mathrm{ACB}$がともに${60}^\circ$より小さいとき,$\mathrm{BC}>2 \sqrt{3}r$となることを証明しなさい.
滋賀大学 国立 滋賀大学 2014年 第2問
$2$つの数列$\{a_n\},\ \{b_n\}$を以下のように定める.

$a_1=a,\ a_{2n}=a_{2n-1}+d,\ a_{2n+1}=ra_{2n} \quad (n=1,\ 2,\ 3,\ \cdots)$
$b_1=a,\ b_{2n}=rb_{2n-1},\ b_{2n+1}=b_{2n}+d \quad (n=1,\ 2,\ 3,\ \cdots)$

ただし,$a \neq 0$,$r \neq 0$,$r \neq 1$とする.このとき,次の問いに答えよ.

(1)$a=3$,$d=1$,$r=2$のとき,$b_9$を求めよ.
(2)数学的帰納法を用いて,すべての自然数$n$に対して次が成り立つことを示せ.
\[ a_{2n}=ar^{n-1}+\frac{d(r^n-1)}{r-1} \]
(3)すべての自然数$n$に対して$\displaystyle b_{2n+1}-a_{2n}=\frac{2}{5}ar^n$が成り立つとき,$r$の値を求めよ.
奈良女子大学 国立 奈良女子大学 2014年 第5問
三角形$\mathrm{ABC}$を$\mathrm{AB}=\mathrm{AC}$かつ$\mathrm{AB}>\mathrm{BC}$である二等辺三角形とする.辺$\mathrm{AB}$上の点$\mathrm{D}$を,三角形$\mathrm{ABC}$と三角形$\mathrm{CDB}$が相似となるようにとる.三角形$\mathrm{ABC}$の外心を$\mathrm{O}$,三角形$\mathrm{ADC}$の外心を$\mathrm{P}$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$は三角形$\mathrm{ADC}$の外部にあることを示せ.
(2)四角形$\mathrm{AOCP}$において,$\angle \mathrm{AOC}=\angle \mathrm{APC}$であることを示せ.
(3)三角形$\mathrm{CDB}$の外心は,三角形$\mathrm{ADC}$の外接円の周上にあることを示せ.
徳島大学 国立 徳島大学 2014年 第3問
次の問いに答えよ.

(1)等式$\displaystyle \sin^4 x \cos^2 x+\cos^4 x \sin^2 x=\frac{1}{4} \sin^2 2x$が成り立つことを示せ.
(2)$\displaystyle x=\frac{\pi}{2}-t$とおくことにより,$\displaystyle \int_0^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx=\int_0^{\frac{\pi}{2}} \cos^4 t \sin^2 t \, dt$が成り立つことを示せ.
(3)$\displaystyle \int_0^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx$の値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2014年 第2問
$xy$平面上に$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 3)$を直径の両端とする円がある.図のようにこの円と$x$軸との原点以外の交点を$\mathrm{B}$,線分$\mathrm{OA}$に関して$\mathrm{B}$と反対側の円周上に$\angle \mathrm{COA}={45}^\circ$を満たす点$\mathrm{C}$をとり,線分$\mathrm{CA}$の延長線と$x$軸との交点を$\mathrm{D}$とする.以下の問いに答えよ.
(図は省略)

(1)$\triangle \mathrm{AOD}$の外心を$\mathrm{P}$として,$\angle \mathrm{OPD}$の大きさを求めよ.
(2)点$\mathrm{D}$の座標を求めよ.
(3)$\triangle \mathrm{AOD}$の外接円の方程式を求めよ.
(4)$\angle \mathrm{AOB}$の二等分線と線分$\mathrm{AD}$との交点を$\mathrm{E}$とし,$\overrightarrow{\mathrm{OE}}$を成分表示せよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。