タグ「証明」の検索結果

60ページ目:全1924問中591問~600問を表示)
岡山大学 国立 岡山大学 2014年 第3問
関数$f(x)$を
\[ f(x)=[x]+2(x-[x])-(x-[x])^2 \]
と定める.ここで,$[x]$は$n \leqq x$を満たす最大の整数$n$を表す.

(1)$f(x) \geqq x$であることを示せ.
(2)$f(x+1)=f(x)+1$であることを示せ.
(3)$0 \leqq x \leqq 2$において,$y=f(x)$のグラフを描け.
(4)$0 \leqq a<1$とするとき,$\displaystyle \int_a^{a+1} f(x) \, dx$を求めよ.
東北大学 国立 東北大学 2014年 第6問
以下の問いに答えよ.

(1)$n$を自然数,$a$を正の定数として,
\[ f(x)=(n+1) \{ \log (a+x)-\log (n+1) \}-n(\log a-\log n)-\log x \]
とおく.$x>0$における関数$f(x)$の極値を求めよ.ただし,対数は自然対数とする.
(2)$n$が$2$以上の自然数のとき,次の不等式が成り立つことを示せ.
\[ \frac{1}{n} \sum_{k=1}^n \frac{k+1}{k}>(n+1)^{\frac{1}{n}} \]
筑波大学 国立 筑波大学 2014年 第3問
関数$f(x)=e^{-\frac{x^2}{2}}$を$x>0$で考える.$y=f(x)$のグラフの点$(a,\ f(a))$における接線を$\ell_a$とし,$\ell_a$と$y$軸との交点を$(0,\ Y(a))$とする.以下の問いに答えよ.ただし,実数$k$に対して$\displaystyle \lim_{t \to \infty}t^ke^{-t}=0$であることは証明なしで用いてよい.

(1)$Y(a)$がとりうる値の範囲を求めよ.
(2)$0<a<b$である$a,\ b$に対して,$\ell_a$と$\ell_b$が$x$軸上で交わるとき,$a$のとりうる値の範囲を求め,$b$を$a$で表せ.
(3)$(2)$の$a,\ b$に対して,$Z(a)=Y(a)-Y(b)$とおく.$\displaystyle \lim_{a \to +0}Z(a)$および$\displaystyle \lim_{a \to +0} \frac{Z^\prime(a)}{a}$を求めよ.
筑波大学 国立 筑波大学 2014年 第5問
実数を成分とする正方行列
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right),\quad B=\left( \begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array} \right),\quad E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right) \]
について,以下の問いに答えよ.

(1)$AB=BA$を満たす$A$は,実数$x,\ y$を用いて$A=xB+yE$と表せることを示せ.
(2)$A^3=E$のとき
\[ (t^2-\Delta)A=(t \Delta+1)E \]
を示せ.ただし,$t=a+d$,$\Delta=ad-bc$とする.
(3)$AB=BA$かつ$A^3=E$を満たす$A$をすべて求めよ.
筑波大学 国立 筑波大学 2014年 第6問
$xy$平面上に楕円
\[ C_1:\frac{x^2}{a^2}+\frac{y^2}{9}=1 \quad (a>\sqrt{13}) \]
および双曲線
\[ C_2:\frac{x^2}{4}-\frac{y^2}{b^2}=1 \quad (b>0) \]
があり,$C_1$と$C_2$は同一の焦点をもつとする.また$C_1$と$C_2$の交点
\[ \mathrm{P} \left( 2 \sqrt{1+\frac{t^2}{b^2}},\ t \right) \quad (t>0) \]
における$C_1$,$C_2$の接線をそれぞれ$\ell_1$,$\ell_2$とする.

(1)$a$と$b$の間に成り立つ関係式を求め,点$\mathrm{P}$の座標を$a$を用いて表せ.
(2)$\ell_1$と$\ell_2$が直交することを示せ.
(3)$a$が$a>\sqrt{13}$を満たしながら動くときの点$\mathrm{P}$の軌跡を図示せよ.
筑波大学 国立 筑波大学 2014年 第2問
$xy$平面上の曲線$C:y=x \sin x+\cos x-1 (0<x<\pi)$に対して,以下の問いに答えよ.ただし$\displaystyle 3<\pi<\frac{16}{5}$であることは証明なしで用いてよい.

(1)曲線$C$と$x$軸の交点はただ$1$つであることを示せ.
(2)曲線$C$と$x$軸の交点を$\mathrm{A}(\alpha,\ 0)$とする.$\displaystyle \alpha>\frac{2}{3}\pi$であることを示せ.
(3)曲線$C$,$y$軸および直線$\displaystyle y=\frac{\pi}{2}-1$で囲まれる部分の面積を$S$とする.また,$xy$平面の原点$\mathrm{O}$,点$\mathrm{A}$および曲線$C$上の点$\displaystyle \mathrm{B} \left( \frac{\pi}{2},\ \frac{\pi}{2}-1 \right)$を頂点とする三角形$\mathrm{OAB}$の面積を$T$とする.$S<T$であることを示せ.
筑波大学 国立 筑波大学 2014年 第4問
平面上の直線$\ell$に同じ側で接する$2$つの円$C_1$,$C_2$があり,$C_1$と$C_2$も互いに外接している.$\ell$,$C_1$,$C_2$で囲まれた領域内に,これら$3$つと互いに接する円$C_3$を作る.同様に$\ell$,$C_n$,$C_{n+1} (n=1,\ 2,\ 3,\ \cdots)$で囲まれた領域内にあり,これら$3$つと互いに接する円を$C_{n+2}$とする.円$C_n$の半径を$r_n$とし,$\displaystyle x_n=\frac{1}{\sqrt{r_n}}$とおく.このとき,以下の問いに答えよ.ただし,$r_1=16$,$r_2=9$とする.

(1)$\ell$が$C_1$,$C_2$,$C_3$と接する点を,それぞれ$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$とおく.線分$\mathrm{A}_1 \mathrm{A}_2$,$\mathrm{A}_1 \mathrm{A}_3$,$\mathrm{A}_2 \mathrm{A}_3$の長さおよび$r_3$の値を求めよ.
(2)ある定数$a,\ b$に対して$x_{n+2}=ax_{n+1}+bx_n (n=1,\ 2,\ 3,\ \cdots)$となることを示せ.$a,\ b$の値も求めよ.
(3)$(2)$で求めた$a,\ b$に対して,$2$次方程式$t^2=at+b$の解を$\alpha,\ \beta (\alpha>\beta)$とする.$x_1=c \alpha^2+d \beta^2$を満たす有理数$c,\ d$の値を求めよ.ただし,$\sqrt{5}$が無理数であることは証明なしで用いてよい.
(4)$(3)$の$c,\ d,\ \alpha,\ \beta$に対して,
\[ x_n=c \alpha^{n+1}+d \beta^{n+1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
となることを示し,数列$\{r_n\}$の一般項を$\alpha,\ \beta$を用いて表せ.
(図は省略)
埼玉大学 国立 埼玉大学 2014年 第2問
$xy$平面の格子点上に駒「銀」が$1$枚ある.ただし,格子点とは$x$座標と$y$座標がともに整数となる点である.$1$回の操作で,次の$(\mathrm{a})$,$(\mathrm{b})$,$(\mathrm{c})$,$(\mathrm{d})$,$(\mathrm{e})$のいずれか$1$つを等しい確率で選び,駒「銀」を移動させるものとする(下図参照).

$(\mathrm{a})$ $(x,\ y)$から$(x,\ y+1)$に移動させる.
$(\mathrm{b})$ $(x,\ y)$から$(x+1,\ y+1)$に移動させる.
$(\mathrm{c})$ $(x,\ y)$から$(x-1,\ y+1)$に移動させる.
$(\mathrm{d})$ $(x,\ y)$から$(x-1,\ y-1)$に移動させる.
$(\mathrm{e})$ $(x,\ y)$から$(x+1,\ y-1)$に移動させる.

最初に駒「銀」は原点$(0,\ 0)$にあるものとし,以下の問いに答えよ.

(1)$3$回の操作の後,駒が$(1,\ 1)$にある確率を求めよ.
(2)$n$回の操作の後,駒がある点の$y$座標は$n-1$とならないことを示せ.
(3)$n$回の操作の後,駒が$(n-1,\ 0)$にある確率を求めよ.
(図は省略)
埼玉大学 国立 埼玉大学 2014年 第4問
実数$a,\ b$は$a>b>0$および$a^2-b^2=2ab$を満たすとする.$xy$平面上で$(a \cos \theta,\ b \sin \theta)$ $(0 \leqq \theta \leqq 2\pi)$によって媒介変数表示された楕円を$C$とする.点$\displaystyle \mathrm{P}(b \cos t,\ a \sin t) \left( 0<t<\frac{\pi}{2} \right)$と$C$上の動点$\mathrm{Q}(a \cos \theta,\ b \sin \theta)$に対し,$f(\theta)=|\overrightarrow{\mathrm{PQ}}|^2$とおく.

(1)$f^\prime(\theta)=0$であるとき,$\sin 2\theta=\sin (\theta-t)$が成り立つことを示せ.
(2)$f^\prime(\theta)=0$となる$\theta$を$t$を用いて表せ.
(3)$f^\prime(\theta)=0$となる$\theta$がちょうど$3$つとなる$t$の値を求めよ.
(4)$t$を$(3)$で求めた値とする.このとき,$f^\prime(\theta)=0$となる各$\theta$に対応する$C$上の$3$点を頂点とする三角形の面積を$a,\ b$を用いて表せ.
熊本大学 国立 熊本大学 2014年 第2問
$a$を正の定数とする.条件
\[ \cos \theta-\sin \theta=a \sin \theta \cos \theta,\quad 0<\theta<\pi \]
を満たす$\theta$について,以下の問いに答えよ.

(1)条件を満たす$\theta$は,$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で,ただ$1$つ存在することを示せ.
(2)条件を満たす$\theta$の個数を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。