タグ「証明」の検索結果

56ページ目:全1924問中551問~560問を表示)
静岡大学 国立 静岡大学 2014年 第2問
$a,\ b,\ c,\ d,\ s,\ t$を実数とし,$b \neq 0$とする.$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$とし,$B=\left( \begin{array}{rr}
1 & 0 \\
s & -1
\end{array} \right)$は等式
\[ AB+BA=(a+d)B \]
を満たすとする.$x$の$2$次方程式
\[ x^2-(a+d)x+ad-bc=0 \]
は異なる$2$つの実数解$\alpha,\ \beta$をもつとし,列ベクトル$X=\left( \begin{array}{c}
1 \\
t
\end{array} \right)$は等式$AX=\alpha X$を満たすとする.このとき,次の問いに答えよ.

(1)$s$を行列$A$の成分を用いて表せ.
(2)$t$を$a,\ b,\ \alpha$を用いて表せ.
(3)$\left( \begin{array}{c}
u \\
v
\end{array} \right)=BX$とし,$P=\left( \begin{array}{cc}
1 & u \\
t & v
\end{array} \right)$とするとき,行列$P$は逆行列をもち,
\[ AP=P \left( \begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array} \right) \]
を満たすことを示せ.
静岡大学 国立 静岡大学 2014年 第3問
$p$を$\displaystyle 0<p<\frac{1}{6}$を満たす実数とする.次のように数列$\{a_n\}$を帰納的に定義する.$a_1=0$とし,第$n$項$a_n$を用いた関数
\[ f_n(x)=2x^3-3px^2+6a_nx-1 \]
が極大値と極小値をもつならば,第$n+1$項$a_{n+1}$を$f_n(x)$の極大値と極小値の和により定める.そうでないならば,$a_{n+1}=0$と定める.このとき,次の問いに答えよ.

(1)$f_1(x)$が極大値と極小値をもつことを示し,$a_2$を$p$を用いて表せ.
(2)$k$を自然数とする.関数$f_k(x)$が極大値と極小値をもつならば,関数$f_{k+1}(x)$も極大値と極小値をもつことを示せ.
(3)$a_{n+1}$と$a_n$の関係式を$p$を用いて表せ.
(4)一般項$a_n$を$p$を用いて表せ.
静岡大学 国立 静岡大学 2014年 第4問
$\alpha$を実数とする.$2$つの関数$f(x)=e^{-x}(\sin x-\cos x)$と$g(x)=\alpha e^{-x}$について,次の問いに答えよ.

(1)$\displaystyle \int f(x) \, dx=-e^{-x} \sin x+C$であることを示せ.ただし,$C$は積分定数である.
(2)すべての$x \geqq 0$について$f(x) \leqq g(x)$が成り立つような$\alpha$の値の最小値を求めよ.
(3)$\alpha$を$(2)$で求めた最小値とする.曲線$y=f(x) (x \geqq 0)$と曲線$y=g(x) (x \geqq 0)$との共有点の$x$座標を小さい方から順に$a_0,\ a_1,\ a_2,\ \cdots$とし,$n$が自然数であるとき,
\[ S_n=\int_{a_{n-1}}^{a_n} \left\{ g(x)-\frac{|f(x)|+f(x)}{2} \right\} \, dx \]
とする.このとき,$S_n$を求めよ.
(4)$(3)$で求めた$S_n$について,無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和を求めよ.
静岡大学 国立 静岡大学 2014年 第3問
三角形$\mathrm{OAB}$において,頂点$\mathrm{A}$,$\mathrm{B}$におけるそれぞれの外角の二等分線の交点を$\mathrm{C}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)点$\mathrm{P}$が$\angle \mathrm{AOB}$の二等分線上にあるとき,
\[ \overrightarrow{\mathrm{OP}}=t \left( \frac{\overrightarrow{a}}{|\overrightarrow{a}|}+\frac{\overrightarrow{b}}{|\overrightarrow{b}|} \right) \]
となる実数$t$が存在することを示せ.
(2)$|\overrightarrow{a}|=7$,$|\overrightarrow{b}|=5$,$\overrightarrow{a} \cdot \overrightarrow{b}=5$のとき,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
静岡大学 国立 静岡大学 2014年 第1問
$\displaystyle I=\int_0^{\frac{\pi}{2}} \frac{\cos^3 x}{\cos x+\sin x} \, dx$,$\displaystyle J=\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\cos x+\sin x} \, dx$とする.このとき,次の問いに答えよ.

(1)$\displaystyle x=\frac{\pi}{2}-t$とおいて置換積分法を用いることで,$I=J$を示せ.
(2)$I+J$の値を求めよ.
(3)$I$と$J$の値を求めよ.
静岡大学 国立 静岡大学 2014年 第2問
$a,\ b,\ c,\ d,\ s,\ t$を実数とし,$b \neq 0$とする.$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$とし,$B=\left( \begin{array}{rr}
1 & 0 \\
s & -1
\end{array} \right)$は等式
\[ AB+BA=(a+d)B \]
を満たすとする.$x$の$2$次方程式
\[ x^2-(a+d)x+ad-bc=0 \]
は異なる$2$つの実数解$\alpha,\ \beta$をもつとし,列ベクトル$X=\left( \begin{array}{c}
1 \\
t
\end{array} \right)$は等式$AX=\alpha X$を満たすとする.このとき,次の問いに答えよ.

(1)$s$を行列$A$の成分を用いて表せ.
(2)$t$を$a,\ b,\ \alpha$を用いて表せ.
(3)$\left( \begin{array}{c}
u \\
v
\end{array} \right)=BX$とし,$P=\left( \begin{array}{cc}
1 & u \\
t & v
\end{array} \right)$とするとき,行列$P$は逆行列をもち,
\[ AP=P \left( \begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array} \right) \]
を満たすことを示せ.
静岡大学 国立 静岡大学 2014年 第3問
$f(x)$と$g(x)$は$x$の整式で
\[ \begin{array}{l}
f(x)-f(0)=4x^3-5x^2+2x, \\
(2x-1)\{g(x)-g(0)\}=f(x)+2 \int_0^x (x-t)g^\prime(t) \, dt+\int_0^2 g(t) \, dt
\end{array} \]
を満たすとする.ただし,$g^\prime(t)$は$g(t)$の導関数である.このとき,次の問いに答えよ.

(1)等式
\[ -\{g(x)-g(0)\}=f(x)-2 \int_0^x tg^\prime(t) \, dt+\int_0^2 g(t) \, dt \]
が成り立つことを示せ.
(2)$f(x)$が極小値$\displaystyle \frac{9}{4}$をとるとき,$f(x)$と$g(x)$を求めよ.
埼玉大学 国立 埼玉大学 2014年 第1問
$a_1=3$,$\displaystyle a_{n+1}=\frac{5a_n-4}{2a_n-1} (n=1,\ 2,\ 3,\ \cdots)$で定義される数列$\{a_n\}$について,以下の問いに答えよ.

(1)すべての自然数$n$に対し,$a_n>2$であることを示せ.

(2)$\displaystyle b_n=\frac{1}{a_n-2}$とおく.数列$\{b_n\}$の一般項を求めよ.

(3)極限$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
埼玉大学 国立 埼玉大学 2014年 第1問
$p$を素数とする.以下の問いに答えよ.

(1)$1 \leqq r \leqq p-1$を満たす自然数$r$に対し,$\comb{p}{r}$は$p$で割り切れることを示せ.ただし,$\comb{p}{r}$は$p$個から$r$個とる組合せの総数を表すものとする.
(2)$1 \leqq s \leqq q-1$を満たす自然数の組$(q,\ s)$であって,$\comb{q}{s}$が$q$で割り切れないものを$1$組あげよ.
(3)自然数$m,\ n$に対し,$(m+n)^p-(m^p+n^p)$が$p$で割り切れることを示せ.
(4)自然数$n$に対し,$n^p-n$は$p$で割り切れることを,$n$に関する数学的帰納法を用いて証明せよ.
埼玉大学 国立 埼玉大学 2014年 第2問
直角三角形でない三角形$\mathrm{ABC}$において,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対応する角の大きさを$A$,$B$,$C$で表すことにする.このとき,次の$3$つの等式が成り立つことを証明せよ.

(1)$\displaystyle \frac{\cos A}{\sin B \sin C}=1-\frac{1}{\tan B \tan C}$

(2)$\tan A+\tan B+\tan C=\tan A \tan B \tan C$

(3)$\displaystyle \frac{\cos A}{\sin B \sin C}+\frac{\cos B}{\sin C \sin A}+\frac{\cos C}{\sin A \sin B}=2$
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。