タグ「証明」の検索結果

50ページ目:全1924問中491問~500問を表示)
岡山県立大学 公立 岡山県立大学 2015年 第3問
関数$f(x)=(1-x)e^{2x}$について,次の問いに答えよ.

(1)$f(x)$の最大値を求めよ.
(2)曲線$y=f(x)$と直線$y=1-x$とで囲まれた部分の面積を求めよ.
(3)曲線$y=f(x)$上の点$(0,\ 1)$における接線を$\ell$とする.曲線$y=f(x)$と直線$\ell$との交点は$(0,\ 1)$のみであることを示せ.
公立はこだて未来大学 公立 公立はこだて未来大学 2015年 第2問
以下の問いに答えよ.

(1)正弦,余弦に関する加法定理
\[ \left\{ \begin{array}{l}
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
を用いて等式
\[ \sin 3x=3 \sin x-4 \sin^3 x \]
を証明せよ.
(2)関数$y=\sin 3x+3 \cos 2x+6 \sin x (0 \leqq x<2\pi)$の最大値と最小値,およびそのときの$x$の値をすべて求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2015年 第4問
数列$\{a_n\}$,$\{b_n\}$が以下の漸化式をみたすとする.
\[ a_1=10,\quad b_1=24,\quad a_{n+1}=2a_n-8,\quad b_{n+1}=\frac{1}{2}b_n+6 \quad (n=1,\ 2,\ 3,\ \cdots) \]
以下の問いに答えよ.

(1)数列$\{a_n\},\ \{b_n\}$の一般項をそれぞれ求めよ.
(2)$3$辺の長さが,それぞれ$a_2,\ b_2,\ 6$である三角形は存在しないことを示せ.
(3)$3$辺の長さが,それぞれ$a_n,\ b_n,\ 6$である三角形が存在するような$n$の値をすべて求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2015年 第6問
関数$y=x^2 e^{-x}$のグラフを曲線$C$とする.以下の問いに答えよ.

(1)曲線$C$をかけ.ただし,$x \leqq 2$の範囲でよい.
(2)曲線$C$が直線$\displaystyle y=\frac{1}{e}x$に接していることを示し,その接点の座標を求めよ.
(3)曲線$C$と直線$\displaystyle y=\frac{1}{e}x$で囲まれた図形の面積を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2015年 第7問
$n=1,\ 2,\ 3,\ \cdots$に対し,$x$の関数$f_n(x)$を
\[ f_n(x)=\sum_{k=1}^n \frac{{(-1)}^{k-1}}{k}x^k=x+\cdots +\frac{{(-1)}^{n-1}}{n}x^n \]
で定める.ただし,$0 \leqq x<1$とする.以下の問いに答えよ.

(1)$\displaystyle |f_{n+1| \left( \displaystyle\frac{1}{2} \right)-f_n \left( \displaystyle\frac{1}{2} \right)} \leqq \frac{1}{1000(n+1)}$を満たすような$n$の最小値を求めよ.
(2)$\displaystyle \lim_{n \to \infty} {f_n}^\prime(x)$を求めよ.
(3)$n$が偶数であるとき,不等式$f_n(x) \leqq \log (x+1)$を示せ.
富山県立大学 公立 富山県立大学 2015年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$の中点を$\mathrm{Q}$,線分$\mathrm{PQ}$を$2:1$に内分する点を$\mathrm{R}$とし,線分$\mathrm{OR}$の延長が辺$\mathrm{AB}$と交わる点を$\mathrm{S}$とする.このとき,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OS}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)線分$\mathrm{OQ}$を$3:2$に外分する点を$\mathrm{T}$とするとき,$3$点$\mathrm{P}$,$\mathrm{S}$,$\mathrm{T}$は一直線上にあることを示せ.
富山県立大学 公立 富山県立大学 2015年 第3問
次の問いに答えよ.

(1)等式$\sin 3\theta=3 \sin \theta-4 \sin^3 \theta$が成り立つことを示せ.
(2)方程式$8x^3-6x+1=0$が$\displaystyle \sin \frac{\pi}{18}$を解にもつことを示せ.
(3)方程式$8x^3-6x+1=0$のすべての解が実数であることを示せ.
滋賀県立大学 公立 滋賀県立大学 2015年 第1問
曲線$C:y=x^n$($n$は$2$以上の偶数)上に点$\mathrm{A}(-a,\ a^n) (a>0)$と点$\mathrm{B}(b,\ b^n) (b>0)$がある.原点を$\mathrm{O}$とし,$\triangle \mathrm{OAB}$の面積を$S_1$とする.また,線分$\mathrm{AB}$と$C$で囲まれた部分の面積を$S_2$とする.

(1)$S_1$を求めよ.
(2)$S_2$を求めよ.
(3)$\displaystyle S_2 \geqq \frac{2n}{n+1}S_1$が成り立つことを示せ.
滋賀県立大学 公立 滋賀県立大学 2015年 第2問
$xy$平面上に原点$\mathrm{O}$を中心とする半径$1$の円$C$がある.$C$の外部の点$\mathrm{A}(a,\ b) (a^2+b^2>1)$から$C$に接線を$1$本引き,その接点を$\mathrm{P}$とし,半直線$\mathrm{OA}$上に$\mathrm{OA} \cdot \mathrm{OQ}=\mathrm{OP}^2$となる点$\mathrm{Q}$をとる.

(1)$\mathrm{OA} \perp \mathrm{PQ}$となることを示せ.
(2)$\mathrm{Q}$の座標を$a,\ b$を用いて表せ.
(3)$\mathrm{A}$が$b=\sqrt{2}$,$-\sqrt{2} \leqq a \leqq \sqrt{2}$の範囲を動くとき,$\mathrm{Q}$の軌跡を求めて図示せよ.
滋賀県立大学 公立 滋賀県立大学 2015年 第4問
次の問いに答えよ.

(1)双曲線$\displaystyle \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$($a$と$b$は正の実数)の$x>0$の部分を$H$とする.このとき,点$(-a,\ 0)$を通る傾き$t$の直線と$H$との交点を考えることにより,$H$上の点$(x,\ y)$の$x$と$y$をそれぞれ$t$の分数式で表せ.
(2)$(1)$のやり方を用いて,$y=\sqrt{x^2-1} (x>1)$で表される曲線を媒介変数$t$の分数式で表示せよ.
(3)$(2)$の結果を用いて不定積分$\displaystyle \int \frac{1}{\sqrt{x^2-1}} \, dx$を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。