タグ「証明」の検索結果

48ページ目:全1924問中471問~480問を表示)
北里大学 私立 北里大学 2015年 第3問
実数全体を定義域とする関数$f(x)$は奇関数で微分可能であるとする.さらに,$f^\prime(x)$も微分可能で$f^\prime(0)=0$を満たし,$x>0$の範囲で$f^{\prime\prime}(x)>0$であるとする.$y=f(x)$のグラフを$C_1$,$C_1$を$x$軸方向に$a$,$y$軸方向に$f(a)$だけ平行移動した曲線を$C_2$とする.ただし,$a$は正の定数とする.

(1)$f(0)$の値を求めよ.
(2)$f^\prime(x)$は偶関数であることを示せ.
(3)$C_1$と$C_2$の共有点の個数が$2$個であることを示し,その$2$点の$x$座標を求めよ.
(4)$C_1$と$C_2$で囲まれる図形の面積を$S(a)$とする.$a$が$0<a \leqq 3$の範囲を動くとき,$S(a)$を最大にする$a$の値を求めよ.
南山大学 私立 南山大学 2015年 第2問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\displaystyle \angle \mathrm{AOB}=\theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$とする.さらに,辺$\mathrm{OA}$を$t:(1-t)$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$(1-t):t$に内分する点を$\mathrm{Q}$とする.ただし,$0<t<1$である.

(1)ベクトル$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ t$を用いて表せ.
(2)$\triangle \mathrm{OPQ}$の面積を$\overrightarrow{a},\ \overrightarrow{b},\ t,\ \theta$を用いて表せ.
(3)$\triangle \mathrm{OPQ}$の面積が$\triangle \mathrm{OAB}$の面積の$\displaystyle \frac{1}{5}$となる$t$の値を求めよ.
(4)$0<\overrightarrow{b} \cdot (\overrightarrow{a}+\overrightarrow{b})<|\overrightarrow{a}+\overrightarrow{b}|^2$が成り立つことを示せ.
(5)線分$\mathrm{PQ}$の長さが最小となる$t$の値を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
大阪歯科大学 私立 大阪歯科大学 2015年 第2問
$a$が実数であるとき,$f(x)=x^2-ax+a-1$の$0 \leqq x \leqq 1$における最大値が$0$であるという.

(1)$a=0$のとき,このことが成り立つことを示せ.
(2)上の条件が成り立つための$a$の値をすべて求めよ.
(3)$a \leqq 0$のとき,$\displaystyle \int_a^{a+1} f(x) \, dx$の最大値とそのときの$a$の値を求めよ.
大阪薬科大学 私立 大阪薬科大学 2015年 第3問
次の問いに答えなさい.

(1)「自然数$m$を$4$で割ったときの余りが$r$であるならば,$m(m+1)$を$4$で割ったときの余りは$r(3-r)$と等しい」ことを$r=0,\ 1,\ 2,\ 3$のそれぞれの場合について$[う]$で示しなさい.ただし,自然数$m$が整数$q,\ r$を用いて
\[ m=4q+r \quad (0 \leqq r<4) \]
と表されるとき,$r$を,$m$を$4$で割ったときの余りという.
(2)$n$を自然数とする.数列$\{a_n\}$は,初項$a_1$が$2$,公差が$2$の等差数列であり,数列$\{b_n\}$は次の条件
\[ b_1=1,\quad b_{n+1}-b_n=\frac{a_{n+1}}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められている.

(i) 一般項$a_n,\ b_n$は,$n$を用いて表すとそれぞれ$a_n=[$\mathrm{I]$}$,$b_n=[$\mathrm{J]$}$である.
(ii) $2$つの集合$A,\ B$を
\[ A=\{a_n \;|\; n \text{は}39 \text{以下の自然数} \},\quad B=\{b_n \;|\; n \text{は}12 \text{以下の自然数} \} \]
とする.このとき,$A$と$B$の共通部分$A \cap B$の要素の個数を$s$とすると,$s=[$\mathrm{K]$}$である.
(iii) $t$を自然数の定数とする.$2$つの集合$C,\ D$を
\[ C=\{a_n \;|\; n \text{は} 100 \text{以下の自然数}\},\quad D=\{b_n \;|\; n \text{は} t \text{以下の自然数}\} \]
とする.このとき,$C$と$D$の和集合$C \cup D$の要素の個数が$111$であるならば,$t$の値は$t=[$\mathrm{L]$}$である.
津田塾大学 私立 津田塾大学 2015年 第1問
次の問いに答えよ.

(1)$n$を自然数とするとき,不等式$3^n>n^2$を示せ.
(2)正四面体$\mathrm{OABC}$において$\mathrm{OA}$の中点を$\mathrm{M}$,$\mathrm{BC}$の中点を$\mathrm{N}$とする.

(i) $\overrightarrow{\mathrm{MN}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(ii) 直線$\mathrm{MN}$と直線$\mathrm{BC}$は直交することを示せ.
津田塾大学 私立 津田塾大学 2015年 第1問
次の問いに答えよ.

(1)数列$\{a_n\}$は$a_1=1$,および$n=2,\ 3,\ 4,\ \cdots$に対して
\[ 5^{n-1} \times a_1+5^{n-2} \times a_2+\cdots +5 \times a_{n-1}+a_n=0 \]
をみたす.このとき$a_n (n=2,\ 3,\ 4,\ \cdots)$を求めよ.
(2)$n$を自然数とし,$f(x)=x(x-1)(x-2) \cdots (x-n)$とおく.このとき$f(x)$の$x=n$における微分係数$f^\prime(n)$は$n!$に等しいことを示せ.
東京女子大学 私立 東京女子大学 2015年 第2問
事象$X$の確率を$P(X)$で表し,$X$の余事象を$\overline{X}$で表す.事象$A,\ B$が
\[ P(A \cap B)=P(A)P(B) \]
をみたすとき,以下の設問に答えよ.

(1)$P(\overline{A} \cap \overline{B})=P(\overline{A})P(\overline{B})$を示せ.
(2)$\displaystyle P(A \cup B)=\frac{3}{5},\ P(\overline{A} \cup \overline{B})=\frac{13}{15},\ P(A)>P(B)$であるとき,$P(A)$および$P(B)$を求めよ.
東京女子大学 私立 東京女子大学 2015年 第7問
複素数$\alpha$が$\alpha^3=1$かつ$\alpha \neq 1$をみたすとき,以下の設問に答えよ.

(1)$\alpha^2+\alpha+1=0$を示せ.
(2)$(\alpha+1)^{2015}$の値を求めよ.
名城大学 私立 名城大学 2015年 第4問
数列$\{a_n\}$を$a_n=2^{n+1}-3 (n=1,\ 2,\ 3,\ \cdots)$で定める.このとき,定積分
\[ I_n=\int_{a_n}^{a_{n+1}} \{ \log (x+3)-n \log 2 \} \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
について,次の問に答えよ.

(1)$a_{n+1}=\alpha a_n+\beta (n=1,\ 2,\ 3,\ \cdots)$が成り立つように,定数$\alpha,\ \beta$の値を定めよ.
(2)$x=\alpha t+\beta$と置くことにより,$I_{n+1}=\alpha I_n$が成り立つことを示せ.
(3)$I_1$を求めよ.
(4)$I_n$を求めよ.
岡山理科大学 私立 岡山理科大学 2015年 第4問
\begin{mawarikomi}{55mm}{
(図は省略)
}
$5$点$\mathrm{A}(0,\ 0,\ 6)$,$\mathrm{B}(6,\ 0,\ 0)$,$\mathrm{C}(0,\ 6,\ 0)$,$\mathrm{D}(-6,\ 0,\ 0)$,$\mathrm{E}(0,\ -6,\ 0)$と線分$\mathrm{AB}$の中点$\mathrm{M}$について,次の問いに答えよ.

(1)$\mathrm{M}$の座標を求めよ.
(2)点$\mathrm{P}$が線分$\mathrm{AC}$上を動く.線分$\mathrm{MP}$,$\mathrm{PD}$の長さの和$l=\mathrm{MP}+\mathrm{PD}$の最小値と,そのときの$\mathrm{P}$の座標を求めよ.
(3)$\mathrm{P}$を$(2)$で求めたものとする.平面$\mathrm{MPD}$上に線分$\mathrm{BE}$の中点$\mathrm{N}$があることを証明せよ.

\end{mawarikomi}
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。