タグ「証明」の検索結果

39ページ目:全1924問中381問~390問を表示)
岐阜大学 国立 岐阜大学 2015年 第5問
次の問に答えよ.

(1)$\alpha,\ \beta$を$\displaystyle \alpha,\ \beta \neq n\pi+\frac{\pi}{2}$($n$は整数)とする.$\alpha,\ \beta$が$\tan \alpha \tan \beta=1$を満たすとき,ある整数$k$があって,$\displaystyle \alpha+\beta=k\pi+\frac{\pi}{2}$となることを示せ.
(2)$\displaystyle -\frac{\pi}{6}<x<\frac{\pi}{6}$とし,$t=\tan x$とおく.$\tan 3x$を$t$の式で表せ.
(3)$c$を実数とする.$\displaystyle -\frac{\pi}{6}<x<\frac{\pi}{6}$のとき,$2$曲線$y=c \tan x$と$y=\tan 3x$の共有点の個数を求めよ.
名古屋大学 国立 名古屋大学 2015年 第1問
次の問に答えよ.

(1)関数$f(x)=x^{-2}2^x (x \neq 0)$について,$f^\prime(x)>0$となるための$x$に関する条件を求めよ.
(2)方程式$2^x=x^2$は相異なる$3$個の実数解をもつことを示せ.
(3)方程式$2^x=x^2$の解で有理数であるものをすべて求めよ.
名古屋大学 国立 名古屋大学 2015年 第2問
次の問に答えよ.

(1)$\alpha=\sqrt{13}+\sqrt{9+2 \sqrt{17}}+\sqrt{9-2 \sqrt{17}}$とするとき,整数係数の$4$次多項式$f(x)$で$f(\alpha)=0$となるもののうち,$x^4$の係数が$1$であるものを求めよ.
(2)$8$つの実数
\[ \pm \sqrt{13} \pm \sqrt{9+2 \sqrt{17}} \pm \sqrt{9-2 \sqrt{17}} \]
(ただし,複号$\pm$はすべての可能性にわたる)の中で,$(1)$で求めた$f(x)$に対して方程式$f(x)=0$の解となるものをすべて求め,それ以外のものが解でないことを示せ.
(3)$(2)$で求めた$f(x)=0$の解の大小関係を調べ,それらを大きい順に並べよ.
名古屋大学 国立 名古屋大学 2015年 第3問
$e$を自然対数の底とし,$t$を$t>e$となる実数とする.このとき,曲線$C:y=e^x$と直線$y=tx$は相異なる$2$点で交わるので,交点のうち$x$座標が小さいものを$\mathrm{P}$,大きいものを$\mathrm{Q}$とし,$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とする.また,$\mathrm{P}$における$C$の接線と$\mathrm{Q}$における$C$の接線との交点を$\mathrm{R}$とし,曲線$C$,$x$軸および$2$つの直線$x=\alpha$,$x=\beta$で囲まれる部分の面積を$S_1$,曲線$C$および$2$つの直線$\mathrm{PR}$,$\mathrm{QR}$で囲まれる部分の面積を$S_2$とする.このとき,次の問に答えよ.

(1)$\displaystyle \frac{S_2}{S_1}$を$\alpha$と$\beta$を用いて表せ.
(2)$\displaystyle \alpha<\frac{e}{t},\ \beta<2 \log t$となることを示し,$\displaystyle \lim_{t \to \infty} \frac{S_2}{S_1}$を求めよ.必要ならば,$x>0$のとき$e^x>x^2$であることを証明なしに用いてよい.
京都工芸繊維大学 国立 京都工芸繊維大学 2015年 第1問
$xyz$空間の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(2,\ 4,\ -1)$を考える.直線$\mathrm{AB}$上の点$\mathrm{C}_1$,$C_2$はそれぞれ次の条件を満たす.

直線$\mathrm{AB}$上を点$\mathrm{C}$が動くとき,$|\overrightarrow{\mathrm{OC}}|$は$\mathrm{C}$が$\mathrm{C}_1$に一致するとき最小となる.

直線$\mathrm{AB}$上を点$\mathrm{C}$が動くとき,$\displaystyle \frac{|\overrightarrow{\mathrm{AC}}|}{|\overrightarrow{\mathrm{OC}}|}$は$\mathrm{C}$が$\mathrm{C}_2$に一致するとき最大となる.

このとき,次の問いに答えよ.

(1)$|\overrightarrow{\mathrm{OC}_1}|$の値および内積$\overrightarrow{\mathrm{AC}_1} \cdot \overrightarrow{\mathrm{OC}_1}$の値を求めよ.

(2)$\displaystyle \frac{|\overrightarrow{\mathrm{AC}_2}|}{|\overrightarrow{\mathrm{OC}_2}|}$の値および内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}_2}$の値を求めよ.

(3)$2$つの三角形$\triangle \mathrm{AC}_1 \mathrm{O}$と$\triangle \mathrm{AOC}_2$は相似であることを示せ.
信州大学 国立 信州大学 2015年 第2問
次の$3$つの条件を満たす自然数の組$(x,\ y,\ z)$を考える.

$(ⅰ)$ \ $x$は奇数である.
$(ⅱ)$ \ $x^2+y^2=z^2$
$(ⅲ)$ \ $x,\ y,\ z$の最大公約数は$1$である.

例えば$(x,\ y,\ z)=(3,\ 4,\ 5),\ (5,\ 12,\ 13)$などがその例である.

(1)$y$は偶数であることを示せ.
(2)$x=a^2-b^2,\ y=2ab$となる自然数$a,\ b$が存在することを示せ.
(3)条件を満たす$(x,\ y,\ z)$で,$(3,\ 4,\ 5)$と$(5,\ 12,\ 13)$以外のものを$2$組求めよ.
信州大学 国立 信州大学 2015年 第4問
次の問いに答えよ.

(1)$n$個の実数$a_1,\ a_2,\ \cdots,\ a_n$に対して
\[ \left( \sum_{k=1}^n a_k \right)^2 \leqq n \sum_{k=1}^n {a_k}^2 \]
が成立することを示せ.また,等号が成立するための$a_1,\ a_2,\ \cdots,\ a_n$についての必要十分条件を求めよ.
(2)偏りをもつサイコロを$2$回投げるとき,同じ目が続けて出る確率は$\displaystyle \frac{1}{6}$よりも大きいことを示せ.ただし,サイコロが偏りをもつとは,$1$から$6$の目が同様に確からしく出ないことをいう.
信州大学 国立 信州大学 2015年 第1問
次の$3$つの条件を満たす自然数の組$(x,\ y,\ z)$を考える.

$(ⅰ)$ \ $x$は奇数である.
$(ⅱ)$ \ $x^2+y^2=z^2$
$(ⅲ)$ \ $x,\ y,\ z$の最大公約数は$1$である.

例えば$(x,\ y,\ z)=(3,\ 4,\ 5),\ (5,\ 12,\ 13)$などがその例である.

(1)$y$は偶数であることを示せ.
(2)$x=a^2-b^2,\ y=2ab$となる自然数$a,\ b$が存在することを示せ.
(3)条件を満たす$(x,\ y,\ z)$で,$(3,\ 4,\ 5)$と$(5,\ 12,\ 13)$以外のものを$2$組求めよ.
信州大学 国立 信州大学 2015年 第3問
次の問いに答えよ.

(1)$n$個の実数$a_1,\ a_2,\ \cdots,\ a_n$に対して
\[ \left( \sum_{k=1}^n a_k \right)^2 \leqq n \sum_{k=1}^n {a_k}^2 \]
が成立することを示せ.また,等号が成立するための$a_1,\ a_2,\ \cdots,\ a_n$についての必要十分条件を求めよ.
(2)偏りをもつサイコロを$2$回投げるとき,同じ目が続けて出る確率は$\displaystyle \frac{1}{6}$よりも大きいことを示せ.ただし,サイコロが偏りをもつとは,$1$から$6$の目が同様に確からしく出ないことをいう.
信州大学 国立 信州大学 2015年 第4問
$n$を自然数とする.

(1)$n$以下の非負の整数$k$について,関数$x(1+x)^n$の導関数の$x^k$の係数を求めよ.
(2)$\displaystyle \sum_{k=0}^n (k+1)^2 \comb{n}{k}=(n+1)(n+4)2^{n-2}$を示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。