タグ「証明」の検索結果

36ページ目:全1924問中351問~360問を表示)
高知大学 国立 高知大学 2015年 第1問
方程式$x^2+y^2+2kx-4ky+10k-20=0$の表す図形$C$を考える.ただし,$k$は実数とする.次の問いに答えよ.

(1)図形$C$は円であることを示せ.
(2)図形$C$は$k$がどのような値であっても定点を通る.その定点の座標を求めよ.
(3)図形$C$で囲まれる部分の面積の最小値を求めよ.
(4)図形$C$と直線$y=x-2$の共有点の個数を求めよ.
高知大学 国立 高知大学 2015年 第2問
次の条件(イ),(ロ)によって定められる数列$\{a_n\}$がある.

(イ) $a_1=\sqrt{2}+1$
(ロ) $n=1,\ 2,\ 3,\ \cdots$に対し
\[ a_{n+1}=\left\{ \begin{array}{ll}
-\sqrt{2}a_n-1 & (a_n<10 \text{のとき}) \\
(\sqrt{2}-1)a_n+6 & (a_n>10 \text{のとき}) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]

次の問いに答えよ.

(1)$a_2,\ a_3,\ a_4,\ a_5$を求めよ.
(2)$n \geqq 5$のとき,$a_n>10$であることを示せ.
(3)$n \geqq 5$のとき,$a_n$を$n$の式で表せ.
高知大学 国立 高知大学 2015年 第4問
$0 \leqq t<2\pi$とする.関数$f(x)=2x^2+(2+\sin t)x+\cos^2 t-2$について,次の問いに答えよ.

(1)$\displaystyle t=\frac{\pi}{2}$のとき,$y=f(x)$の最小値を求めよ.
(2)$t$がどのような値であっても,$y=f(x)$のグラフは$x$軸と異なる$2$つの共有点を持つことを示せ.
(3)$y=f(x)$のグラフが,$x$軸から切り取る線分の長さの最小値を求めよ.
(4)$(3)$のとき,$y=f(x)$のグラフと$x$軸で囲まれた部分の面積$S$を求めよ.
高知大学 国立 高知大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle |x+1|<\frac{1}{2},\ |y-2|<\frac{1}{3}$のとき
\[ |-8x^3+12xy+3y^2+4|<10 \]
を示せ.
次の$3$題$(2)$~$(4)$から$1$題選択して解答せよ.
(2)$12$個のサイコロを同時に投げたとき,$1$の目がちょうど$n$個出る確率を$P_n$とする.$P_n$は$n=2$のとき最大になることを示せ.
(3)$a$を正の整数とし,$p,\ q$を素数とする.このとき,$2$次方程式
\[ ax^2-px+q=0 \]
の$2$解が整数となるような組$(a,\ p,\ q)$をすべて求めよ.
(4)$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$上に,異なる$2$点$\mathrm{X}$,$\mathrm{Y}$を,$\mathrm{BXYC}$の順に並ぶように選ぶ.$\mathrm{X}$を通り$\mathrm{AB}$に平行な直線と,$\mathrm{Y}$を通り$\mathrm{AC}$に平行な直線との交点を$\mathrm{P}$とし,直線$\mathrm{AP}$と辺$\mathrm{BC}$との交点を$\mathrm{Z}$とする.このとき
\[ \frac{\mathrm{CY}}{\mathrm{BX}}=\frac{\mathrm{YZ}}{\mathrm{XZ}} \]
となることを示せ.
高知大学 国立 高知大学 2015年 第2問
関数$f(x)=nx^2-2(a_1+a_2+\cdots +a_n)x+({a_1}^2+{a_2}^2+\cdots +{a_n}^2)$を考える.ただし,$n$は正の整数で,$a_1,\ a_2,\ \cdots ,\ a_n$は実数である.次の問いに答えよ.

(1)$n=1$および$n=2$のとき,常に$f(x) \geqq 0$であることを示せ.
(2)すべての$n$に対し,常に$f(x) \geqq 0$であることを示せ.
(3)${(a_1+a_2+\cdots +a_n)}^2 \leqq n({a_1}^2+{a_2}^2+\cdots +{a_n}^2)$であることを示せ.
(4)${(a_1+a_2+\cdots +a_n)}^2=n({a_1}^2+{a_2}^2+\cdots +{a_n}^2)$であれば,$a_1,\ a_2,\ \cdots,\ a_n$はすべて等しいことを示せ.
高知大学 国立 高知大学 2015年 第3問
$c$を実数として,次の条件(イ),(ロ)によって定められる数列$\{a_n\}$がある.

(イ) $a_1=0$
(ロ) $n=1,\ 2,\ 3,\ \cdots$に対し
\[ a_{n+1}=\left\{ \begin{array}{ll}
a_n+c & (a_n<5 \text{のとき}) \\
a_n-5 & (5 \leqq a_n<10 \text{のとき}) \\
2a_n-c+1 & (a_n \geqq 10 \text{のとき})
\end{array} \right. \]

次の問いに答えよ.

(1)$c=5$のとき,$\{a_n\}$を求めよ.
(2)$c=10$のとき,$\{a_n\}$を求めよ.
(3)$c<5$のとき,$a_n<10 (n=1,\ 2,\ 3,\ \cdots)$を示せ.
(4)$\displaystyle c=\frac{16}{3}$のとき,$a_n>1000$をみたす最小の$n$を求めよ.
東京海洋大学 国立 東京海洋大学 2015年 第5問
関数$f(x)$はすべての実数$x$について
\[ f(x)=x+e^x \int_0^x e^{-t} f(t) \, dt \]
を満たす.

(1)$f(0)$の値を求めよ.
(2)$f^\prime(x)=2f(x)-x+1$が成り立つことを示せ.
(3)$g(x)=e^{-2x}f(x)$とする.$g^\prime(x)$を求めよ.
(4)$f(x)$を求めよ.
群馬大学 国立 群馬大学 2015年 第3問
$a$を定数,$e$を自然対数の底とし,$\displaystyle f(x)=(a-x^2)e^{-\frac{x^2}{2}}$とおく.

(1)$x>0$のとき,不等式$\displaystyle e^x>1+x+\frac{x^2}{2}$が成り立つことを証明せよ.これを用いて$\displaystyle \lim_{x \to \infty}f(x)=0$を示せ.
(2)関数$f(x)$が$-1<x<2$においてちょうど$2$個の極値をもつように,定数$a$の値の範囲を定めよ.
(3)$a$は$(2)$で定めた範囲にあるとする.区間$(-\infty,\ \infty)$における$f(x)$の最大値と最小値を求めよ.
福井大学 国立 福井大学 2015年 第5問
$2$つの関数$f(x)=x^2+4$,$g(x)=x^2$について,以下の問いに答えよ.

(1)曲線$y=f(x)$上の点$\mathrm{P}(a,\ f(a))$における接線の方程式を求めよ.
(2)$(1)$で求めた接線と,曲線$y=g(x)$との交点を$\mathrm{A}$,$\mathrm{B}$とする.曲線$y=g(x)$の,点$\mathrm{A}$における接線と点$\mathrm{B}$における接線との交点を$\mathrm{C}$とする.点$\mathrm{C}$の座標を求めよ.また,点$\mathrm{C}$は曲線$y=x^2-4$上にあることを示せ.
(3)直線$\mathrm{AB}$と曲線$y=g(x)$で囲まれた部分の面積は,$a$の値によらずに一定であることを示せ.
室蘭工業大学 国立 室蘭工業大学 2015年 第3問
$a$を定数とし,$\displaystyle 0<a<\frac{\pi}{2}$とする.媒介変数$t$を用いて
\[ \left\{ \begin{array}{l}
x=\cos^3 t \\
y=\sin^3 t \phantom{2^{\mkakko{}}} \!\!\!\!\!\!\!\!\!\!
\end{array} \right. \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
と表される曲線を$C$とする.また,$C$の$0 \leqq t \leqq a$の部分の長さを$L$とする.

(1)$L$を$a$を用いて表せ.ただし,$L$は$\displaystyle L=\int_0^a \sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$と表される.
(2)曲線$C$上の点$\mathrm{P}(\cos^3 a,\ \sin^3 a)$における接線$\ell$の方程式を求めよ.また,$\ell$と$x$軸の交点$\mathrm{Q}$の座標を求めよ.
(3)$(2)$の$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離を$M$とするとき,$\displaystyle L=\frac{3}{2}M$が成り立つことを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。