タグ「証明」の検索結果

27ページ目:全1924問中261問~270問を表示)
京都大学 国立 京都大学 2015年 第5問
$a,\ b,\ c,\ d,\ e$を正の有理数として整式

$f(x)=ax^2+bx+c$
$g(x)=dx+e$

を考える.すべての正の整数$n$に対して$\displaystyle \frac{f(n)}{g(n)}$は整数であるとする.このとき,$f(x)$は$g(x)$で割り切れることを示せ.
京都大学 国立 京都大学 2015年 第5問
$a,\ b,\ c,\ d,\ e$を正の実数として整式

$f(x)=ax^2+bx+c$
$g(x)=dx+e$

を考える.すべての正の整数$n$に対して$\displaystyle \frac{f(n)}{g(n)}$は整数であるとする.このとき,$f(x)$は$g(x)$で割り切れることを示せ.
大阪大学 国立 大阪大学 2015年 第1問
自然数$n$に対して関数$f_n(x)$を
\[ f_n(x)=\frac{x}{n(1+x)} \log \left( 1+\frac{x}{n} \right) \quad (x \geqq 0) \]
で定める.以下の問いに答えよ.

(1)$\displaystyle \int_0^n f_n(x) \, dx \leqq \int_0^1 \log (1+x) \, dx$を示せ.
(2)数列$\{I_n\}$を
\[ I_n=\int_0^n f_n(x) \, dx \]
で定める.$0 \leqq x \leqq 1$のとき$\log (1+x) \leqq \log 2$であることを用いて数列$\{I_n\}$が収束することを示し,その極限値を求めよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$であることは用いてよい.
大阪大学 国立 大阪大学 2015年 第2問
実数$x,\ y$が$|x| \leqq 1$と$|y| \leqq 1$を満たすとき,不等式
\[ 0 \leqq x^2+y^2-2x^2y^2+2xy \sqrt{1-x^2} \sqrt{1-y^2} \leqq 1 \]
が成り立つことを示せ.
大阪大学 国立 大阪大学 2015年 第3問
以下の問いに答えよ.

(1)$\sqrt{2}$と$\sqrt[3]{3}$が無理数であることを示せ.
(2)$p,\ q,\ \sqrt{2}p+\sqrt[3]{3}q$がすべて有理数であるとする.そのとき,$p=q=0$であることを示せ.
大阪大学 国立 大阪大学 2015年 第1問
実数$x,\ y$が$|x| \leqq 1$と$|y| \leqq 1$を満たすとき,不等式
\[ 0 \leqq x^2+y^2-2x^2y^2+2xy \sqrt{1-x^2} \sqrt{1-y^2} \leqq 1 \]
が成り立つことを示せ.
大阪大学 国立 大阪大学 2015年 第5問
$n$を$2$以上の整数とする.正方形の形に並んだ$n \times n$のマスに$0$または$1$のいずれかの数字を入れる.マスは上から第$1$行,第$2$行,$\cdots$,左から第$1$列,第$2$列,$\cdots$,と数える.数字の入れ方についての次の条件$p$を考える.

条件$p$:$1$から$n-1$までのどの整数$i,\ j$についても,第$i$行,第$i+1$行と第$j$列,第$j+1$列とが作る$2 \times 2$の$4$個のマスには$0$と$1$が$2$つずつ入る.
(図は省略)
(1)条件$p$を満たすとき,第$n$行と第$n$列の少なくとも一方には$0$と$1$が交互に現れることを示せ.
(2)条件$p$を満たすような数字の入れ方の総数$a_n$を求めよ.
北海道大学 国立 北海道大学 2015年 第5問
$n$は自然数,$a$は$\displaystyle a>\frac{3}{2}$をみたす実数とし,実数$x$の関数
\[ f(x)=\int_0^x (x-\theta)(a \sin^{n+1}\theta-\sin^{n-1}\theta) \, d\theta \]
を考える.ただし,$n=1$のときは$\sin^{n-1}\theta=1$とする.

(1)$\displaystyle \int_0^{\frac{\pi}{2}} \sin^{n+1} \theta \, d\theta=\frac{n}{n+1}\int_0^{\frac{\pi}{2}} \sin^{n-1}\theta \, d\theta$を示せ.

(2)$\displaystyle f^\prime \left( \frac{\pi}{2} \right)=0$をみたす$n$と$a$の値を求めよ.
(3)$(2)$で求めた$n$と$a$に対して,$\displaystyle f \left( \frac{\pi}{2} \right)$を求めよ.
一橋大学 国立 一橋大学 2015年 第1問
$n$を$2$以上の整数とする.$n$以下の正の整数のうち,$n$との最大公約数が$1$となるものの個数を$E(n)$で表す.たとえば
\[ E(2)=1,\quad E(3)=2,\quad E(4)=2,\ \quad\cdots,\quad E(10)=4,\ \quad \cdots \]
である.

(1)$E(1024)$を求めよ.
(2)$E(2015)$を求めよ.
(3)$m$を正の整数とし,$p$と$q$を異なる素数とする.$n=p^mq^m$のとき$\displaystyle \frac{E(n)}{n} \geqq \frac{1}{3}$が成り立つことを示せ.
九州大学 国立 九州大学 2015年 第1問
$C_1$,$C_2$をそれぞれ次式で与えられる放物線の一部分とする.

$C_1:y=-x^2+2x,\quad 0 \leqq x \leqq 2$
$C_2:y=-x^2-2x,\quad -2 \leqq x \leqq 0$

また,$a$を実数とし,直線$y=a(x+4)$を$\ell$とする.

(1)直線$\ell$と$C_1$が異なる$2$つの共有点をもつための$a$の値の範囲を求めよ.
以下,$a$が$(1)$の条件を満たすとする.このとき,$\ell$と$C_1$で囲まれた領域の面積を$S_1$,$x$軸と$C_2$で囲まれた領域で$\ell$の下側にある部分の面積を$S_2$とする.
(2)$S_1$を$a$を用いて表せ.
(3)$S_1=S_2$を満たす実数$a$が$\displaystyle 0<a<\frac{1}{5}$の範囲に存在することを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。