タグ「証明」の検索結果

25ページ目:全1924問中241問~250問を表示)
名古屋市立大学 公立 名古屋市立大学 2016年 第2問
図$1$から図$3$は,辺の長さが$1$の正方形が並んだ図形である.これらの図において,$1$つ,またはいくつかの正方形で構成される四角形を考える.例えば,図$1$において灰色で示した図形は,点$\mathrm{A}$を$1$つの頂点とする幅が$3$,高さが$2$の四角形である.次の問いに答えよ.
(図は省略)

(1)図$1$の中に点$\mathrm{A}$を$1$つの頂点とする四角形はいくつあるか.
(2)図$2$の中に四角形はいくつあるか.
(3)図$3$の中に四角形はいくつあるか.
名古屋市立大学 公立 名古屋市立大学 2016年 第2問
図$1$から図$3$は,辺の長さが$1$の正方形が並んだ図形である.これらの図において,$1$つ,またはいくつかの正方形で構成される四角形を考える.例えば,図$1$において灰色で示した図形は,点$\mathrm{A}$を$1$つの頂点とする幅が$3$,高さが$2$の四角形である.次の問いに答えよ.
(図は省略)

(1)図$1$の中に点$\mathrm{A}$を$1$つの頂点とする四角形はいくつあるか.
(2)図$2$の中に四角形はいくつあるか.
(3)図$3$の中に四角形はいくつあるか.
兵庫県立大学 公立 兵庫県立大学 2016年 第4問
$i$を虚数単位とし,$\displaystyle \alpha=\cos \frac{2\pi}{7}+i \sin \frac{2\pi}{7}$とする.

(1)$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6=-1$が成立することを示せ.
(2)$z=\alpha+\alpha^2+\alpha^4$とするとき,$z+\overline{z}$と$z \overline{z}$を求めよ.ここで$\overline{z}$は$z$の共役複素数である.
(3)$\alpha+\alpha^2+\alpha^4$を求めよ.
岡山県立大学 公立 岡山県立大学 2016年 第1問
整数$1,\ 2,\ 3,\ 4,\ 5$から三つの整数を重複なく選び,それを並べて$3$桁の整数を作る.次の問いに答えよ.

(1)このような整数は何個あるか.
(2)このような整数をすべて足し合わせるといくらになるか.
(3)このような整数のうち,$2$の倍数は何個あるか.
(4)このような整数のうち,$3$の倍数は何個あるか.
(5)このような整数を重ねて$6$桁の整数を作る.例えば,$215$を重ねて$215215$とする.このようにしてできた$6$桁の整数は$7$の倍数であることを示せ.
岡山県立大学 公立 岡山県立大学 2016年 第2問
次の問いに答えよ.

(1)実数$a,\ b,\ c$が$a+b+c=5$かつ$ab+bc+ca=4+abc$を満たすとき,$a,\ b,\ c$の少なくとも一つは$1$であることを示せ.
(2)$x^2-4x+1=0$のとき,$\displaystyle x^3+\frac{1}{x^3}$,$\displaystyle x^5+\frac{1}{x^5}$の値を求めよ.
(3)次の関数を微分せよ.
\[ y=x^{\cos x} \quad (x>0) \]
滋賀県立大学 公立 滋賀県立大学 2016年 第1問
実数$a,\ b,\ c$は,$a<b<c$,$a+b+c=0$を満たしている.このとき,放物線$C:y=ax^2+bx+c$を考える.

(1)$C$は$x$軸と異なる$2$点で交わることを示せ.
(2)$C$が$x$軸から切り取る線分の長さを$L$とする.このとき,$L^2$を$a,\ b$を用いて表せ.
(3)$(2)$で定義した$L$の値の範囲を求めよ.
滋賀県立大学 公立 滋賀県立大学 2016年 第2問
$n,\ p,\ q (p \leqq q)$を自然数とするとき,次の不等式が成り立つことを示せ.


(1)$\displaystyle \left( 1+\frac{1}{p} \right)^n \geqq 1+\frac{n}{p}$

(2)$\displaystyle \sum_{p=1}^q \log_{10} \left( 1+\frac{n}{p} \right) \leqq n \log_{10}(1+q)$
京都府立大学 公立 京都府立大学 2016年 第1問
$\alpha,\ \beta$を正の無理数とする.$2$つの集合$A,\ B$を
\[ A=\{ \, [n \alpha] \;|\; n=1,\ 2,\ 3,\ \cdots \, \},\quad B=\{ \, [n \beta] \;|\; n=1,\ 2,\ 3,\ \cdots \, \} \]
で定める.集合$C$を$A$と$B$の共通部分とする.集合$D$を$A$と$B$の和集合とする.$\displaystyle \frac{1}{\alpha}+\frac{1}{\beta}=1$のとき以下の問いに答えよ.ただし,実数$x$に対して,$x$を超えない最大の整数を$[x]$と表す.

(1)$C$は空集合となることを示せ.
(2)$E=\{ \, n \;|\; n=1,\ 2,\ 3,\ \cdots,\ 99 \, \}$のとき,$E$は$D$の部分集合となることを示せ.
京都府立大学 公立 京都府立大学 2016年 第3問
$s$を実数とする.$1<t<5$とする.$\mathrm{O}$を原点とする$xyz$空間内に$2$点$\mathrm{A}(1,\ 0,\ 0)$,$\displaystyle \mathrm{P} \left( s,\ t,\ \frac{4}{t} \right)$がある.以下の問いに答えよ.

(1)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{P}$は一直線上にないことを示せ.
(2)$\angle \mathrm{OPA}$は鋭角であることを示せ.
(3)$\triangle \mathrm{OAP}$の面積の最小値を求めよ.
(4)$\triangle \mathrm{OAP}$の面積が最小となるとき,$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{P}$の定める平面に垂直な単位ベクトルをすべて求めよ.
京都府立大学 公立 京都府立大学 2016年 第2問
$2$つの数列$\{a_n\}$,$\{b_n\}$を

$a_1=1,\quad b_1=0,\quad a_2=0,\quad b_2=1$
$a_{n+2}=2a_{n+1}+a_n \quad (n=1,\ 2,\ 3,\ \cdots)$
$b_{n+2}=2b_{n+1}+b_n \quad (n=1,\ 2,\ 3,\ \cdots)$

で定める.関数$\displaystyle f(x)=\frac{1}{2+x}$に対し,関数$g_n(x) (n=1,\ 2,\ 3,\ \cdots)$を

$g_1(x)=f(x)$
$g_{n+1}(x)=g_n(f(x)) \quad (n=1,\ 2,\ 3,\ \cdots)$

で定める.以下の問いに答えよ.

(1)$a_{n+2}=b_{n+1} (n=1,\ 2,\ 3,\ \cdots)$となることを示せ.
(2)$\displaystyle g_n(0)=\frac{a_{n+2}}{b_{n+2}} (n=1,\ 2,\ 3,\ \cdots)$となることを示せ.
(3)数列$\{c_n\}$を$c_n=g_n(0) (n=1,\ 2,\ 3,\ \cdots)$で定めるとき,$\displaystyle \lim_{n \to \infty} c_n$を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。