タグ「証明」の検索結果

191ページ目:全1924問中1901問~1910問を表示)
名古屋市立大学 公立 名古屋市立大学 2010年 第2問
原点をOとする座標空間において,2点A$(2,\ 0,\ 0)$,B$(0,\ 3,\ 0)$から等距離にある点の集合を平面Hとする.次の問いに答えよ.

(1)直線ABが平面Hに垂直であることを示せ.
(2)原点Oから平面Hに下ろした垂線の足を点Cとする.点Cの座標を求めよ.
(3)$d$を正の実数とする.PをH上の点とするとき,不等式$\text{OP} \leqq d$を満たす点Pの領域の面積を求めよ.
京都府立大学 公立 京都府立大学 2010年 第1問
以下の問いに答えよ.

(1)$\sqrt{5}$が無理数であることを証明せよ.
(2)$\alpha$を$2$次方程式$x^2-4x-1=0$の解とするとき,$(\alpha-a)(\alpha-b)=1+c$を満たす自然数の組$(a,\ b,\ c)$をすべて求めよ.
(3)座標平面上の点$(s,\ t)$で$s$と$t$のどちらも整数となるものを格子点と呼ぶ.連立不等式
\[ \left\{
\begin{array}{l}
y \geqq 3x^2-12x-3 \\
y \leqq 0
\end{array}
\right. \]
の表す領域を$D$とする.$k^2-4k-1<0$を満たす整数$k$に対して,直線$\ell:x=k$上にあり,かつ,$D$に含まれる格子点の個数を$N_k$とする.

(i) $N_k$を$k$を用いて多項式で表せ.
(ii) $D$に含まれる格子点の総数を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第4問
$xy$平面上に点P$_0$を原点とし,点P$_1$,P$_2$,$\cdots$,P$_n$が$y$軸上の正の部分にこの順に並んでいる.$y=x^2 \ (x>0)$上に点Q$_1$,Q$_2$,$\cdots$,Q$_n$がこの順に並んでおり,$k=1$から$n$に対し,$\angle \text{Q}_k \text{P}_{k-1} \text{P}_k= \angle \text{Q}_k \text{P}_k \text{P}_{k-1} = \theta$が成り立っている.$\displaystyle \frac{1}{\tan \theta}=t$とおくとき,次の問いに答えよ.

(1)点P$_1$,P$_2$,P$_3$の座標を求めよ.
(2)P$_n(0,\ y_n)$,Q$_n(x_n,\ x_n^2)$とするとき,$y_n$を$x_{n+1}$で表せ.
(3)点P$_n$の座標を推測して,その結果を数学的帰納法で証明せよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第1問
ある自然数$k \geqq 3$に対して行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \ $(ただし$b \neq 0$)が,$A^k=O$(零行列)を満たすとする.次の問いに答えよ.

(1)行列$A$は逆行列を持たないことを示せ.
(2)$A^2=O$であることを示せ.
(3)$0$でない実数を$p$,単位行列を$E$とおく.$A-pE$が逆行列を持つことを示し,逆行列を$a,\ b,\ p$で表せ.
名古屋市立大学 公立 名古屋市立大学 2010年 第2問
負でない実数を$a$とする.$xy$平面上で$\displaystyle 0 \leqq x \leqq a,\ 0 \leqq y \leqq \frac{1}{1+x}$を満たす領域を$A$とし,$A$を$x$軸のまわりに$1$回転してできる立体の体積を$V_1$,$y$軸のまわりに$1$回転してできる立体の体積を$V_2$とする.次の問いに答えよ.

(1)$V_1$を求めよ.
(2)$V_2$を求めよ.
(3)$V_1-V_2$が最大となるときの$a$の値を$p$とおく.$p$を求め,$p<1$を示せ.
(4)$p<a<1$において$V_1=V_2$となる$a$が存在することを示せ.ただし,$\log 2<0.7$を使用してもよい.
滋賀県立大学 公立 滋賀県立大学 2010年 第2問
座標平面の原点$\mathrm{O}$を中心とする半径$r$の円を$C$とする.$C$上の$2$点$\mathrm{P}_1$,$\mathrm{P}_2$を原点に関して対称な位置にとる.また,点$\mathrm{Q}$を平面上の任意の点とし,$L={\mathrm{QP}_1}^2+{\mathrm{QP}_2}^2$とおく.

(1)$\mathrm{Q}$を固定したとき,$L$は$\mathrm{P}_1$,$\mathrm{P}_2$のとり方に依存せず一定であることを示せ.
(2)$\mathrm{Q}$が放物線$y=-x^2+5x-8$上を動くとき,$L$の最小値とそのときの$\mathrm{Q}$の座標を求めよ.
高知工科大学 公立 高知工科大学 2010年 第3問
関数列
\[ f_n(x)=x^{n-1},\quad g_n(x)=\sum_{k=1}^n (-1)^{k-1}f_k(x) \quad (n=1,\ 2,\ \cdots) \]
について,次の各問に答えよ.

(1)$\displaystyle F_n(x) = \int_0^x f_n(t) \, dt$を求めよ.
(2)$\{g_n(x)\}$が数列として収束するための実数$x$の条件を求めよ.また,$x$がこの条件を満たすとき$\displaystyle g(x)=\lim_{n \to \infty}g_n(x)$とおく.
\[ \int_0^x g(t) \, dt \]
を求めよ.
(3)(1)の$F_n(x)$について
\[ -F_{n+1}(1) \leqq \int_0^1 \frac{(-1)^n f_{n+1}(t)}{1+t} \, dt \leqq F_{n+1}(1) \]
が成り立つことを証明せよ.
(4)無限級数
\[ 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots +(-1)^{n-1} \frac{1}{n}+\cdots \]
の収束,発散について調べ,収束すればその和を求めよ.
滋賀県立大学 公立 滋賀県立大学 2010年 第3問
$a,\ b,\ p,\ q$を実数として,未知数$x$の方程式
\[ p(x^2+ax+b) +x-q=0 \cdots (*) \]
を考える.

(1)$p$がどのような値であっても方程式$(*)$がつねに実数解をもつためには,$a^2-4b \geqq 0$が必要条件であることを示せ.
(2)$a^2-4b \geqq 0$とし,$\alpha,\ \beta \ (\alpha \leqq \beta)$を方程式$x^2+ax+b=0$の$2$つの実数解とする.このとき,$p$がどのような値であっても方程式$(*)$がつねに実数解をもつのは$q$がどのような範囲$R$にあるときか答えよ.
(3)$a^2-4b \geqq 0$で$q$が$(2)$で求めた範囲$R$にあるとき,方程式$(*)$は範囲$R$に少なくとも$1$つの解をもつことを示せ.
名古屋市立大学 公立 名古屋市立大学 2010年 第4問
関数$\displaystyle f_n(x)=x-\frac{x^2}{2}+\frac{x^3}{3}- \cdots +\frac{(-1)^{n-1}x^n}{n} \ $(ただし$x \geqq 0,\ n=1,\ 2,\ \cdots$)について,次の問いに答えよ.

(1)導関数$\displaystyle \frac{d}{dx}f_n(x)$を求めよ.
(2)$n$が偶数のとき,$f_n(x) \leqq \log (1+x)$,$n$が奇数のとき$f_n(x) \geqq \log (1+x)$であることを示せ.
(3)(2)を利用して$\displaystyle \log \frac{6}{5}$の値を,小数第3位を四捨五入して小数第2位まで求めよ.
(4)$\displaystyle \frac{1}{250}+\frac{1}{251}+\cdots +\frac{1}{299}+\frac{1}{300}$の値を,小数第3位を四捨五入して小数第2位まで求めよ.
京都府立大学 公立 京都府立大学 2010年 第1問
以下の問いに答えよ.

(1)$\sqrt{5}$が無理数であることを証明せよ.
(2)$\alpha$を$2$次方程式$x^2-4x-1=0$の解とするとき,$(\alpha-a)(\alpha-b)=1+c$を満たす自然数の組$(a,\ b,\ c)$をすべて求めよ.
(3)座標平面上の点$(s,\ t)$で$s$と$t$のどちらも整数となるものを格子点と呼ぶ.連立不等式
\[ \left\{
\begin{array}{l}
y \geqq 3x^2-12x-3 \\
y \leqq 0
\end{array}
\right. \]
の表す領域を$D$とする.$k^2-4k-1<0$を満たす整数$k$に対して,直線$\ell:x=k$上にあり,かつ,$D$に含まれる格子点の個数を$N_k$とする.

(i) $N_k$を$k$を用いて多項式で表せ.
(ii) $D$に含まれる格子点の総数を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。