タグ「証明」の検索結果

185ページ目:全1924問中1841問~1850問を表示)
愛知教育大学 国立 愛知教育大学 2010年 第7問
2次の正方行列$A,\ B$に対して,次の命題が真か偽かを答えよ.さらに,真ならば証明をし,偽ならば反例をあげよ.

(1)$A,\ B$がともに逆行列を持つならば,和$A+B$も逆行列を持つ.
(2)行列の和$A+B$が逆行列を持つならば,$A,\ B$はともに逆行列を持つ.
(3)$A,\ B$がともに逆行列を持つならば,積$ABA$も逆行列を持つ.
(4)行列の積$ABA$が逆行列を持つならば,$A,\ B$はともに逆行列を持つ.
千葉大学 国立 千葉大学 2010年 第11問
$f(x)$は実数全体で定義された関数とする.実数$a$に関する条件$(\mathrm{P})$を考える.

$(\mathrm{P})$ 正の実数$r$を十分小さく選べば,$|x-a|<r$をみたすすべての実数$x$に対して$f(x) \leqq f(a)$が成り立つ.

このとき,以下の問いに答えよ.

(1)実数$a$が条件$(\mathrm{P})$をみたし,かつ,$f(x)$が$x=a$で微分可能ならば,$f^\prime(a)=0$であることを証明せよ.
(2)関数$f(x)$が
\[ f(x)=\left\{
\begin{array}{ll}
|x|-x & (x<1 \text{のとき}) \\
|x^2-6x+8| & (x \geqq 1 \text{のとき})
\end{array}
\right. \]
で定義されているとき,条件$(\mathrm{P})$をみたすような実数$a$全体の集合を決定せよ.
(3)一般に,実数全体で定義された関数$f(x)$に対し,次の命題は正しいか.正しければ証明し,正しくなければ反例を挙げよ.

(命題) すべての実数$a$が条件$(\mathrm{P})$をみたすならば,$f(x)$は定数関数である.
浜松医科大学 国立 浜松医科大学 2010年 第2問
3次関数$f(x)=x^3-3ax^2 \ (a>0)$と,曲線$C:y=f(x) \ (-\infty<x<\infty)$を考える.以下の問いに答えよ.

(1)$y=f(x)$の変曲点における接線の式を求めよ.
(2)曲線$C$はこの変曲点に関して対称であることを示せ.
(3)$b,\ c$は実数とする.3次方程式$x^3-3ax^2=bx-c$が3つの解をもち,それらの解が等差数列をなすとき,$c$を$a,\ b$の式で表せ.
(4)(3)において,等差数列の公差が$2 \sqrt{3}$に等しいとする.このとき,3次関数$f(x)-bx+c$の極値を求めよ.
九州工業大学 国立 九州工業大学 2010年 第4問
右図のように平面上に正六角形$\mathrm{ABCDEF}$がある.時刻$n$ \\
$(n=1,\ 2,\ 3,\ \cdots)$において動点$\mathrm{P}$は正六角形の$6$つの頂点 \\
のいずれかにあり,時刻$1$では頂点$\mathrm{A}$にあるものとする. \\
時刻$n+1$には,時刻$n$のときにあった頂点の隣り合う$2$つの \\
頂点のいずれかに移動する.どちらの頂点に移動するかは \\
同様に確からしいものとする.時刻$n$において,動点$\mathrm{P}$が頂点 \\
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$にある確率をそれぞれ \\
$a_n,\ b_n,\ c_n,\ d_n,\ e_n,\ f_n$とする.以下の問いに答えよ.
\img{678_3150_2010_1}{60}


(1)$a_2,\ b_2,\ c_2,\ d_2,\ e_2,\ f_2$を求めよ.
(2)$a_3,\ b_3,\ c_3,\ d_3,\ e_3,\ f_3$を求めよ.
(3)$n$が偶数のとき,$b_n+d_n+f_n$を求めよ.
(4)すべての時刻$n$に対して,$b_n=f_n$および$c_n=e_n$が同時に成立することを数学的帰納法を用いて示せ.
(5)$m$を$1$以上の整数とするとき,$d_{2m}$を$m$を用いて表せ.また,$\displaystyle \lim_{m \to \infty}d_{2m}$を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第2問
4辺の長さが$\mathrm{AB}=a,\ \mathrm{BC}=b,\ \mathrm{CD}=c,\ \mathrm{DA}=d$である四角形$\mathrm{ABCD}$が円に内接している.$\mathrm{AC}=x,\ \mathrm{BD}=y$とおくとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$と$\triangle \mathrm{CDA}$に余弦定理を適用して,$x$を$a,\ b,\ c,\ d$で表せ.また$y$を$a,\ b,\ c,\ d$で表せ.
(2)$xy$を$a,\ b,\ c,\ d$で表すと,$xy=ac+bd$となる.このことを(1)を用いて示せ.
宮城教育大学 国立 宮城教育大学 2010年 第2問
自然数$N$は$30$の倍数である.
\begin{align}
& U=\{x \;|\; x \text{は}1 \text{以上} N \text{以下の奇数} \}, \nonumber \\
& A=\{ x \;|\; x \in U,\ x \text{は}3 \text{の倍数} \}, \nonumber \\
& B=\{ x \;|\; x \in U,\ x \text{は}5 \text{の倍数} \}, \nonumber
\end{align}
とし,集合$U,\ A,\ B,\ A \cap B$の要素の個数をそれぞれ$u_N,\ a_N,\ b_N,\ c_N$と表す.次の問いに答えよ.

(1)$u_N,\ a_N,\ b_N,\ c_N$を$N$を用いて表せ.
(2)$N$以下の素数の個数を$P_N$とするとき,不等式$P_N \leqq u_N-a_N-b_N+c_N+2$を示せ.
(3)(2)の$P_N$について,$\displaystyle \frac{P_N}{N} \leqq \frac{1}{3}$を示せ.
浜松医科大学 国立 浜松医科大学 2010年 第4問
ある感染症の対策について考える.感染症の防御のためには感染拡大の試算が必要であり,感染拡大は自然にはその感染症の感染力と,致死性によって予測される.感染経路は,飛沫,接触,飲食などいろいろあり,感染力の制御,つまり感染を広げないために,ワクチン開発はもちろんであるが,外出規制(イベントの自粛や学級閉鎖など),手洗い呼びかけ,などが有効である. \\
ここでは簡単のために,$1$つの感染症のみを考え,ある一定の集団(たとえば$1000$人程度の島)を対象とし,外部との接触,出入りがないと仮定する.最初の時点での過去感染者,未感染者,現在感染者の割合をそれぞれ$x_0,\ y_0,\ z_0$とする.現在感染者は$1$か月後にはすべて過去感染者となり,一度感染した人はもう感染しない.また幸いなことにこの感染により死者は生じず,また簡単のために他要因による死者,あるいは出生,転入出もないとする. \\
$1$か月ごとの変動を見ることとし,$i$か月後の時点の上記の割合をそれぞれ$x_i,\ y_i,\ z_i$で示す.症状は丁度$1$か月続くので,一人の人が現在感染者として数えられるのは$1$回のみである. \\
過去感染者は,それまでの過去感染者に,$1$か月前の現在感染者を足したものである.また,現在感染者は,$1$か月前の未感染者と$1$か月前の現在感染者の接触頻度と,この感染症の感染力によって決まる.接触頻度の係数を$a$,感染力の係数を$b$とすると,現在感染者の割合は$1$か月前の現在感染者の割合,未感染者の割合,$a,\ b$の$4$つをかけたもので求められる. \\
$x_0=0$,$y_0=0.9$,$z_0=0.1$として,以下の問いに答えよ.計算は小数点以下第$4$位を四捨五入して求めよ.

(1)$x_i,\ y_i,\ z_i$を,$x_{i-1},\ y_{i-1},\ z_{i-1},\ a,\ b$で表せ.
(2)$a=1,\ b=1$として,$x_1,\ y_1,\ z_1,\ x_2,\ y_2,\ z_2,\ x_3,\ y_3,\ z_3$をそれぞれ求めよ.
(3)$a=1$,感染力の係数$b$を$2$とした時の$x_1,\ x_2,\ x_3$を求めよ.
(4)手洗いの徹底や外出規制が最初からなされたとして,$a=0.5$,$b=1$とした時の,$x_1,\ x_2,\ x_3$を求め,(2),(3)の結果と共に,縦軸を過去感染者の割合,横軸を時間として,$3$つの場合の変化を同一座標上にグラフで示せ.
宮城教育大学 国立 宮城教育大学 2010年 第3問
座標平面上に点$\mathrm{B}_n(b_n,\ 0)$,$\displaystyle \mathrm{C}_n \left( \frac{b_n+b_{n+1}}{2},\ \frac{1}{2^{n-1}} \right) \ (n=1,\ 2,\ 3,\ \cdots)$がある.ただし,$b_n \leqq b_{n+1}$である.$2$点$\mathrm{B}_n$,$\mathrm{B}_{n+1}$間の距離を$\mathrm{B}_n \mathrm{B}_{n+1}$で表すとき,$\displaystyle \mathrm{B}_{n+1} \mathrm{B}_{n+2}=\frac{1}{2} \mathrm{B}_n \mathrm{B}_{n+1}$が成立している.$b_1=0,\ b_2=1$のとき,次の問いに答えよ.

(1)$d_n=\mathrm{B}_n \mathrm{B}_{n+1}$とおくとき,$d_n$を$n$を用いて表せ.
(2)$b_n$を$n$を用いて表せ.
(3)点$\mathrm{C}_n \ (n=1,\ 2,\ 3,\ \cdots)$は同一直線上にあることを示せ.
(4)$\log_{10}2=0.3010$として,$b_n<1.99$をみたす最大の自然数$n$を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第4問
関数$\displaystyle f(x)=\frac{x+2}{x^2+4a}$を考える.ただし,$a$は$1 \leqq a<2$をみたす定数とする.導関数$f^\prime(x)$に対して,$f^\prime(x)=0$となる$x$のうち正のものを$\beta$とする.次の問いに答えよ.

(1)$x \geqq 0$における$f(x)$の増減を調べ,極値を求めよ.
(2)$f(x)=f(a)$をみたす$x$を求めよ.
(3)$\displaystyle a-1<\frac{2a}{2+a}$および$\beta<a$を示せ.
(4)$a-1 \leqq x \leqq a$において,$f(x)$の最小値が$\displaystyle \frac{4}{9}$であるとき,$f(x)$の最大値を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第5問
関数$\displaystyle f(x)=\int_\alpha^x (t-\alpha)\cos (x-t) \, dt$を考える.ただし,$\alpha$は定数とする.次の問いに答えよ.

(1)$x$を定数とみて,$u=x-t$とおく.置換積分法を用いて,
\[ \int_\alpha^x (t-\alpha)\cos (x-t) \, dt=\int_0^{x-\alpha}(x-\alpha-u)\cos u \, du \]
となることを示せ.
(2)導関数$f^\prime(x)$を求めよ.
(3)関数$f(x)$を求めよ.
(4)曲線$y=f(x) \ (\alpha \leqq x \leqq \alpha+2\pi)$と$x$軸で囲まれた部分を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。