タグ「証明」の検索結果

184ページ目:全1924問中1831問~1840問を表示)
旭川医科大学 国立 旭川医科大学 2010年 第1問
次の問いに答えよ.

(1)整数を係数とする$n$次方程式
\[ f(x)=a_0x^n+a_1x^{n-1}+a_2x^{n-2}+\cdots +a_{n-1}x+a_n=0 \]
が有理数の解$\displaystyle \frac{\beta}{\alpha}$($\alpha$と$\beta$は互いに素な整数とする)をもつとき,$\alpha$は$a_0$の約数であり$\beta$は$a_n$の約数であることを示せ.
(2)素数$p$に対して,
\[ x+y+z=\frac{p}{3},\quad xy+yz+zx=\frac{1}{p},\quad xyz=\frac{1}{p^3} \]
を満たす$x,\ y,\ z$がすべて正の有理数であるとき,$p$および$x,\ y,\ z$を求めよ.
旭川医科大学 国立 旭川医科大学 2010年 第2問
$\alpha>1$とする.$\displaystyle 0<t<\frac{\pi}{\alpha-1}$となる$t$に対して,$xy$平面上の点P$(\cos t,\ \sin t)$と点Q$(\cos \alpha t,\ \sin \alpha t)$を通る直線を$\ell_t$とする.次の問いに答えよ.

(1)直線$\ell_t$の方程式を
\[ f(t)x+g(t)y=h(t) \]
とする.$h(t)=-\sin (\alpha-1)t$のとき,$f(t),\ g(t)$を求めよ.
(2)行列$\left( \begin{array}{cc}
f(t) & g(t) \\
f^\prime(t) & g^\prime(t)
\end{array} \right)$は逆行列をもつことを示せ.
(3)$x(t),\ y(t)$を
\[ \left( \begin{array}{cc}
f(t) & g(t) \\
f^\prime(t) & g^\prime(t)
\end{array} \right) \left( \begin{array}{c}
x(t) \\
y(t)
\end{array} \right)=\left( \begin{array}{c}
h(t) \\
h^\prime(t)
\end{array} \right) \]
を満たすものとし,点R$(x(t),\ y(t))$が描く曲線を$C$とする.このとき,点Rは直線$\ell_t$上にあり,曲線$C$の点Rにおける接線は$\ell_t$と一致することを示せ.
旭川医科大学 国立 旭川医科大学 2010年 第3問
関数$\displaystyle f(x)=\sin x \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right)$の逆関数を$g(x) \ (-1 \leqq t \leqq 1)$とおくとき,次の問いに答えよ.

(1)$-1<x<1$のとき,$g^\prime(x)$を$x$を用いて表せ.
(2)曲線$y=\sin^2 x \ (0 \leqq x \leqq \pi)$と直線$y=t \ (0<t<1)$の2つの交点の$x$座標を,それぞれ$\alpha,\ \beta \ (\alpha<\beta)$とおくとき,$\displaystyle \int_\alpha^\beta \sin^2 x \, dx$を$t$と関数$g$を用いて表せ.
(3)$\displaystyle h(t)=\frac{2}{\pi}\int_\alpha^\beta \sin^2 x \, dx-\sqrt{1-t^2} \ (0<t<1)$とおくとき,$h(t)<0 \ (0<t<1)$を示し$h(t)$を最小にする$t$の値を求めよ.
旭川医科大学 国立 旭川医科大学 2010年 第4問
次の問いに答えよ.

(1)関数$\displaystyle f(x)=\frac{1-\cos x}{x^2}$について,次の問いに答えよ.

$(ⅰ)$ $\displaystyle \lim_{x \to 0}f(x)$を求めよ.
$(ⅱ)$ 区間$0<x<\pi$で$f(x)$の増加減少を調べよ.

(2)三角形ABCにおいて,$\angle \text{A},\ \angle \text{B}$の大きさをそれぞれ$\alpha,\ \beta$とし,それらの角の対辺の長さをそれぞれ$a,\ b$で表す.$0<\alpha<\beta<\pi$のとき,次の不等式が成り立つことを証明せよ.
\[ \frac{b^2}{a^2}<\frac{1-\cos \beta}{1-\cos \alpha}<\frac{\beta^2}{\alpha^2} \]
小樽商科大学 国立 小樽商科大学 2010年 第4問
関数$f(x)$が,次の$(ⅰ),\ (ⅱ)$を満たしている.

(i) $f(0) \neq 0$である.
(ii) すべての実数$x,\ y$に対して,$\displaystyle f(x)+f(y)=2f \left( \frac{x+y}{2} \right) \times f \left( \frac{x-y}{2} \right)$が成立する.

$f(p)=f(q)$のとき,次の(1)~(3)に答えよ.

(1)$f(0)=1$を示せ.
(2)$f(p+q)+f(p-q)$を$f(p)$を用いて表せ.
(3)$f(p+q)=1$または$f(p-q)=1$が成立することを示せ.
滋賀大学 国立 滋賀大学 2010年 第2問
$\mathrm{AD} \para \mathrm{BC},\ \mathrm{BC}=2 \mathrm{AD}$である四角形$\mathrm{ABCD}$がある.点$\mathrm{P},\ \mathrm{Q}$が
\[ \overrightarrow{\mathrm{PA}}+2 \overrightarrow{\mathrm{PB}}+3 \overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{0}},\quad \overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}=\overrightarrow{\mathrm{0}} \]
を満たすとき,次の問いに答えよ.

(1)$\mathrm{AB}$と$\mathrm{PQ}$が平行であることを示せ.
(2)3点$\mathrm{P},\ \mathrm{Q},\ \mathrm{D}$が一直線上にあることを示せ.
滋賀医科大学 国立 滋賀医科大学 2010年 第2問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{BC}},\ \overrightarrow{\mathrm{OB}} \perp \overrightarrow{\mathrm{BC}}$とする.

(1)三角形$\mathrm{OAB},\ \mathrm{OAC},\ \mathrm{OBC},\ \mathrm{ABC}$はすべて直角三角形であることを示せ.
(2)$\mathrm{OC}$の中点$\mathrm{M}$から平面$\mathrm{ABC}$に下ろした垂線の足を$\mathrm{N}$とする.
\[ \overrightarrow{\mathrm{CN}}=s \overrightarrow{\mathrm{CA}}+t \overrightarrow{\mathrm{CB}} \]
と表すときの$s,\ t$を,長さ$\mathrm{OA},\ \mathrm{OB}$で表せ.
滋賀医科大学 国立 滋賀医科大学 2010年 第3問
次の問いに答えよ.

(1)$a$を実数の定数,$f(x)$をすべての点で微分可能な関数とする.このとき次の等式を示せ.
\[ f^\prime(x)+af(x)=e^{-ax}(e^{ax}f(x))^\prime \]
ただし,$^\prime$は$x$についての微分を表す.
(2)(1)の等式を利用して,次の式を満たす関数$f(x)$で,$f(0)=0$となるものを求めよ.
\[ f^\prime(x)+2f(x)=\cos x \]
(3)(2)で求めた関数$f(x)$に対して,数列$\displaystyle \left\{ |f(n \pi)| \right\} \ (n=1,\ 2,\ 3,\ \cdots)$の極限値
\[ \lim_{n \to \infty} |f(n \pi)| \]
を求めよ.
滋賀医科大学 国立 滋賀医科大学 2010年 第4問
2回微分可能な関数$f(x)$,すなわち$f(x)$の導関数$f^\prime(x)$及び$f^\prime(x)$の導関数$f^{\prime\prime}(x)$が存在する関数が,すべての実数$x$について
\[ f^\prime(x)>f^{\prime\prime}(x) \]
を満たしている.また,$a<b$とする.

(1)$\displaystyle \frac{f^\prime(a)}{e^a}>\frac{f^\prime(b)}{e^b}$を示せ.
(2)$\displaystyle \frac{f^\prime(a)}{e^a}>\frac{f(b)-f(a)}{e^b-e^a}>\frac{f^\prime(b)}{e^b}$を示せ.
(3)すべての実数$x$について$f(x)>0$であるとき,すべての実数$x$について
\[ f(x)>f^\prime(x)>0 \]
が成立することを示せ.
滋賀医科大学 国立 滋賀医科大学 2010年 第5問
$n$を2以上の自然数として,階乗$n!$を素数の積で表すときに現れる2の個数を$a_n$とおく.すなわち$\displaystyle \frac{n!}{2^{a_n}}$は奇数である.

(1)$\displaystyle \frac{(2n)!}{2^nn!}$は奇数であることを示せ.
(2)$a_{2n}-a_n$を$n$を用いて表せ.
(3)$n=2^k \ (k \text{は自然数})$のとき,$a_n$を$n$を用いて表せ.
(4)$a_n<n$を示せ.
(5)$\sqrt[n]{n!}$は無理数であることを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。