タグ「証明」の検索結果

183ページ目:全1924問中1821問~1830問を表示)
鹿児島大学 国立 鹿児島大学 2010年 第1問
次の各問いに答えよ.

(1)正の実数$a$に関する次の各命題の真偽を述べよ.また,真ならば証明し,偽ならば反例をあげよ.

(2)$a$が自然数ならば$\sqrt{a}$は無理数である.
(3)$a$が無理数ならば$\sqrt{a}$も無理数である.

(4)4個のさいころを同時に投げるとき,目の和が7になる確率を求めよ.
(5)$\triangle$ABCにおいて,$\angle \text{A}=75^\circ,\ \angle \text{B}=60^\circ,\ \text{AB}=1$とする.頂点Aを通り辺BCに垂直な直線と$\triangle$ABCの外接円との交点をPとする.このとき,線分APの長さを求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第2問
座標平面において,点C$\displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とし,半径が$\displaystyle \frac{1}{2}$の円を$S$とする.$S$上に点N$(0,\ 1)$をとり,$\overrightarrow{\mathrm{ON}}=\overrightarrow{n}$とする.このとき,次の各問いに答えよ.ただし,Oは原点を表すものとする.

(1)$x$軸上に点P$(x,\ 0)$をとり,直線NPと円$S$との交点のうち,Nと異なるものをQとする.$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$とおき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OQ}}=a \overrightarrow{p}+b \overrightarrow{n}$の形で表したとき,$a,\ b$を$x$で表せ.
(2)$x$軸上に2点P$_1(x_1,\ 0)$,P$_2(x_2,\ 0)$をとる.直線NP$_1$と円$S$との交点のうち,Nと異なるものをQ$_1$とし,直線NP$_2$と円$S$との交点のうち,Nと異なるものをQ$_2$とする.このとき,$x_1x_2=-1$が成り立っていれば
\[ \overrightarrow{\mathrm{CQ}_1}+\overrightarrow{\mathrm{CQ}_2}=\overrightarrow{\mathrm{0}} \]
が成立することを証明せよ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルを表すものとする.
鹿児島大学 国立 鹿児島大学 2010年 第1問
次の各問いに答えよ.

(1)正の実数$a$に関する次の各命題の真偽を述べよ.また,真ならば証明し,偽ならば反例をあげよ.

(2)$a$が自然数ならば$\sqrt{a}$は無理数である.
(3)$a$が無理数ならば$\sqrt{a}$も無理数である.

(4)4個のさいころを同時に投げるとき,目の和が7になる確率を求めよ.
(5)$\triangle$ABCにおいて,$\angle \text{A}=75^\circ,\ \angle \text{B}=60^\circ,\ \text{AB}=1$とする.頂点Aを通り辺BCに垂直な直線と$\triangle$ABCの外接円との交点をPとする.このとき,線分APの長さを求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第3問
座標平面において,点$\mathrm{C} \displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とし,半径が$\displaystyle \frac{1}{2}$の円を$S$とする.$S$上に点$\mathrm{N}(0,\ 1)$をとり,$\overrightarrow{\mathrm{ON}}=\overrightarrow{n}$とする.このとき,次の各問いに答えよ.ただし,$\mathrm{O}$は原点を表すものとする.

(1)$x$軸上に点$\mathrm{P}(x,\ 0)$をとり,直線$\mathrm{NP}$と円$S$との交点のうち,$\mathrm{N}$と異なるものを$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$とおき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OQ}}=a \overrightarrow{p}+b \overrightarrow{n}$の形で表したとき,$a,\ b$を$x$で表せ.
(2)$x$軸上に$2$点$\mathrm{P}_1(x_1,\ 0)$,$\mathrm{P}_2(x_2,\ 0)$をとる.直線$\mathrm{NP}_1$と円$S$との交点のうち,$\mathrm{N}$と異なるものを$\mathrm{Q}_1$とし,直線$\mathrm{NP}_2$と円$S$との交点のうち,$\mathrm{N}$と異なるものを$\mathrm{Q}_2$とする.このとき,$x_1 x_2=-1$が成り立っていれば
\[ \overrightarrow{\mathrm{CQ}_1}+\overrightarrow{\mathrm{CQ}_2}=\overrightarrow{\mathrm{0}} \]
が成立することを証明せよ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルを表すものとする.
鹿児島大学 国立 鹿児島大学 2010年 第3問
座標平面において,点C$\displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とし,半径が$\displaystyle \frac{1}{2}$の円を$S$とする.$S$上に点N$(0,\ 1)$をとり,$\overrightarrow{\mathrm{ON}}=\overrightarrow{n}$とする.このとき,次の各問いに答えよ.ただし,Oは原点を表すものとする.

(1)$x$軸上に点P$(x,\ 0)$をとり,直線NPと円$S$との交点のうち,Nと異なるものをQとする.$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$とおき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OQ}}=a \overrightarrow{p}+b \overrightarrow{n}$の形で表したとき,$a,\ b$を$x$で表せ.
(2)$x$軸上に2点P$_1(x_1,\ 0)$,P$_2(x_2,\ 0)$をとる.直線NP$_1$と円$S$との交点のうち,Nと異なるものをQ$_1$とし,直線NP$_2$と円$S$との交点のうち,Nと異なるものをQ$_2$とする.このとき,$x_1x_2=-1$が成り立っていれば
\[ \overrightarrow{\mathrm{CQ}_1}+\overrightarrow{\mathrm{CQ}_2}=\overrightarrow{\mathrm{0}} \]
が成立することを証明せよ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルを表すものとする.
鹿児島大学 国立 鹿児島大学 2010年 第4問
$a$を0以上の実数とし,$x>-1$で定義された関数
\[ f(x)=2x^2+(1-a^2) \log (x+1) \]
について,次の各問いに答えよ.

(1)方程式$f^\prime(x)=0$が$x>-1$で異なる2つの実数解をもつような定数$a$の値の範囲を求めよ.
(2)$a$が(1)で求めた範囲にあるとき,関数$f(x)$の増減を調べ,極値を求めよ.
(3)$a$が(1)で求めた範囲にあるとき,関数$f(x)$の極小値は$\displaystyle \frac{1-2 \log 2}{2}$より大きいことを証明せよ.
鹿児島大学 国立 鹿児島大学 2010年 第6問
$x^2-y^2=2$で表される曲線を$C$とし,P$(x_0,\ y_0)$を$C$上の点とする.次の各問いに答えよ.

(1)曲線$C$の点Pにおける接線$\ell$の方程式は
\[ x_0x-y_0y=2 \]
となることを証明せよ.
(2)原点Oから$\ell$に下ろした垂線をOHとする.Hの座標を$(x_1,\ y_1)$とするとき,$x_1,\ y_1$を$x_0$と$y_0$で表せ.
(3)F$(1,\ 0)$,F$^\prime(-1,\ 0)$とする.$\text{FH} \cdot \text{F}^\prime \text{H}$は点Pの取り方によらず一定であることを証明せよ.また,その値を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第5問
2次の正方行列$A,\ B$について,次の各問いに答えよ.

(1)行列$A=\left( \begin{array}{cc}
\displaystyle\frac{4}{5} & b \\
c & d
\end{array} \right)$は原点のまわりの回転移動を表し,$b>0$である.行列$A$を求めよ.
(2)行列$B$の表す移動(1次変換)に続いて行列$A$の表す移動を行うことで得られる合成移動(合成変換)は$y$軸に関する対称移動になる.行列$B$を求めよ.
(3)$B \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
x \\
y
\end{array} \right)$を満たす点$(x,\ y)$の集まりは直線となることを示せ.また,その直線を表す式を求めよ.
(4)$B \left( \begin{array}{c}
z \\
w
\end{array} \right)=\left( \begin{array}{c}
2 \\
1
\end{array} \right)$を満たす列ベクトル$\left( \begin{array}{c}
z \\
w
\end{array} \right)$を求めよ.また,この列ベクトルと自然数$n$に対し,$B^n \left( \begin{array}{c}
z \\
w
\end{array} \right)$を求めよ.
室蘭工業大学 国立 室蘭工業大学 2010年 第3問
数列$\{a_n\}$は
\[ a_1=\frac{1}{3},\quad (1-a_{n+1})(1+2a_n)=1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.

(1)すべての正の整数$n$に対して$\displaystyle a_n \geqq \frac{1}{3}$であることを,数学的帰納法によって証明せよ.
(2)$\displaystyle b_n=\frac{1}{a_n}$とおくとき,$b_{n+1}$を$b_n$を用いて表せ.
(3)数列$\{a_n\}$の一般項を求めよ.
室蘭工業大学 国立 室蘭工業大学 2010年 第5問
$a,\ b,\ c,\ d$を実数とする.$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とし,2次の正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$は$A^2=-E$を満たすとする.

(1)$a=0$のとき,$d,\ bc$の値を求めよ.
(2)(1)の条件のもとで,$E+A$が逆行列をもつことを示せ.さらに,実数$p,\ q$を用いて$(E+A)^{-1}$を$pE+qA$の形で表すとき,$p,\ q$の値を求めよ.
(3)$a$を任意の実数とするとき,$a+d,\ ad-bc$の値を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。