タグ「証明」の検索結果

182ページ目:全1924問中1811問~1820問を表示)
茨城大学 国立 茨城大学 2010年 第3問
$\triangle \mathrm{ABC}$において$\angle \mathrm{A},\ \angle \mathrm{B},\ \angle \mathrm{C}$の大きさと対辺の長さをそれぞれ$A,\ B,\ C$および$a,\ b,\ c$で表す.$\triangle \mathrm{ABC}$の面積を$S$とし,$3$頂点を通る円の半径を$R$とする.$a \geqq b \geqq c$とするとき以下の各問に答えよ.

(1)$\sin A \geqq \sin B \geqq \sin C$を示せ.
(2)$S=2R^2 \sin A \sin B \sin C$を示せ.
(3)$\displaystyle \frac{a^2}{S},\ \frac{b^2}{S},\ \frac{c^2}{S}$のそれぞれを$\displaystyle \frac{\cos A}{\sin A},\ \frac{\cos B}{\sin B},\ \frac{\cos C}{\sin C}$を用いて表せ.
(4)$\displaystyle \frac{\cos A}{\sin A} \leqq \frac{\cos B}{\sin B} \leqq \frac{\cos C}{\sin C}$を示せ.
(5)$A \geqq B \geqq C$を示せ.
(6)$\displaystyle \frac{a^2}{S} \geqq \frac{4}{\sqrt{3}}$を示せ.
(7)$\triangle \mathrm{ABC}$が正三角形であるためには$\displaystyle \frac{a^2}{S} = \frac{4}{\sqrt{3}}$であることが必要十分であることを示せ.
茨城大学 国立 茨城大学 2010年 第1問
$\triangle$ABCにおいて$\angle \text{A},\ \angle \text{B},\ \angle \text{C}$の大きさと対辺の長さをそれぞれ$A,\ B,\ C$および$a,\ b,\ c$で表す.$\triangle$ABCの面積を$S$とするとき,以下の各問に答えよ.

(1)$\displaystyle \frac{\sin A}{\sin B \sin C}=\frac{\cos B}{\sin B}+\frac{\cos C}{\sin C}$を示せ.
(2)$\displaystyle \sin A,\ \sin B,\ \sin C,\ \frac{\sin A}{\sin B \sin C}$を$a,\ b,\ c,\ S$で表せ.
(3)$a \geqq b \geqq c$ならば,$\displaystyle \frac{\cos A}{\sin A} \leqq \frac{\cos B}{\sin B} \leqq \frac{\cos C}{\sin C}$となることを示せ.
福島大学 国立 福島大学 2010年 第3問
曲線$C:y=x^3+2ax^2+bx$と直線$\ell:y=ax$が$x \geqq 0$で定義されており,原点以外でこれらの曲線$C$と直線$\ell$が接するものとする.次の問いに答えなさい.なお,$a \neq 0$とする.

(1)曲線$C$と直線$\ell$との共有点が二つあることを示し,それらの共有点の座標を求めなさい.また,$a$のとりうる値の範囲を求めなさい.
(2)曲線$C$と直線$\ell$で囲まれる面積を$S_1$,これら二つの共有点と点$(0,\ -1)$からなる三角形の面積を$S_2$とする.$S_1=S_2$となる$a$の値を求めなさい.
茨城大学 国立 茨城大学 2010年 第4問
自然数$m,\ n$に対して,$m=qn+r, 0 \leqq r<n$となる整数$q$と$r$をそれぞれ$m$を$n$で割ったときの商と余りという.ここでは$m$を$n$で割ったときの余り$r$を$m\,@\,n$で表すことにする.$a,\ b,\ c$を自然数とするとき,次の各問に答えよ.

(1)$1^2\,@\,3, 2^2\,@\,3, 3^2\,@\,3$を求め,$a>3$に対して$a^2\,@\,3$を求めよ.
(2)$(a+b)\,@\,c=\{(a\,@\,c)+(b\,@\,c)\}\,@\,c$となることを示せ.
(3)$a^2+b^2=c^2$のとき$a,\ b$の少なくともひとつは3の倍数であることを示せ.
愛媛大学 国立 愛媛大学 2010年 第8問
$n$を自然数とし,$\displaystyle f(x)=x^2e^{-\frac{2}{3}x^3}$とする.

(1)関数$y=f(x)$の増減を調べ,極値を求めよ.
(2)定積分$\displaystyle \int_1^n f(x) \, dx$を求めよ.
(3)不等式$\displaystyle \sum_{k=1}^n f(k)<\frac{3}{2}e^{-\frac{2}{3}}$を証明せよ.
大阪教育大学 国立 大阪教育大学 2010年 第3問
座標平面上で,行列$\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$で表される移動を$f$とする.0でないすべての実数$t$に対して,点P$\displaystyle \left( t+\frac{1}{t},\ t-\frac{1}{t} \right)$が$f$により曲線$x^2-y^2=4$上に移るとき,次の問に答えよ.

(1)$a,\ b,\ c,\ d$は,
\[ (a+b)^2=(c+d)^2,\quad (a-b)^2=(c-d)^2,\quad (a^2-c^2)+(d^2-b^2)=2 \]
を満たすことを示せ.
(2)$a,\ b,\ c,\ d$は,
\[ a^2-c^2=d^2-b^2=1,\quad ab=cd \]
を満たすことを示せ.
(3)$\biggl( \begin{array}{c}
X \\
Y
\end{array} \biggr)=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr) \biggl( \begin{array}{c}
x \\
y
\end{array} \biggr)$とするとき,
\[ X^2-Y^2=x^2-y^2 \]
となることを示せ.
(4)点Qが直線$y=x$上にあるとき,$f(Q)$は直線$y=x$または直線$y=-x$上にあることを示せ.
愛媛大学 国立 愛媛大学 2010年 第9問
$n$を自然数とし,集合$A,\ B$を
\begin{align}
A= \{ \ a \;|\; a & \text{\ は条件(★)をみたす自然数} \} \nonumber \\
B= \{ \ a \;|\; a & \text{\ は条件(☆)をみたす自然数} \} \nonumber
\end{align}
で定める.ただし,条件(★),(☆)は次で与えられるとする.

\mon[(★)] $2$次方程式$x^2-ax+2^n=0$は異なる$2$つの実数解$\alpha,\ \beta$をもち,$\alpha-\beta$は整数である.
\mon[(☆)] $2$次方程式$x^2-ax+2^n=0$は異なる$2$つの整数解$\alpha,\ \beta$をもつ.


(1)$2$つの集合$A,\ B$について,$A=B$が成り立つことを証明せよ.
(2)次の問いに答えよ.

(i) $n=1,\ 2$のそれぞれの場合について,集合$A$を,要素を書き並べて表せ.
(ii) 集合$A$の要素のうち,最大の数を求めよ.
(iii) 集合$A$のすべての要素の和を求めよ.
徳島大学 国立 徳島大学 2010年 第4問
数列$\{a_n\}$が$\displaystyle a_1=2,\ a_{n+1}=\frac{a_n+2}{a_n+1} \ (n=1,\ 2,\ 3,\ \cdots)$で定められるとき,次の問いに答えよ.

(1)$a_n>1$を示せ.
(2)$\displaystyle |a_{n+1}-\sqrt{2}| \leqq \frac{\sqrt{2}-1}{2}|a_n-\sqrt{2}|$を示せ.
(3)数列$\{a_n\}$の極限値を求めよ.
九州工業大学 国立 九州工業大学 2010年 第4問
次に答えよ.ただし,対数は自然対数とする.必要ならば,$1.09<\log 3<1.10$を用いてよい.

(1)すべての$x>0$に対して,不等式
\[ x-\frac{x^2}{2} < \log (1+x) \]
が成り立つことを示せ.
(2)関数$\displaystyle f(x)=x-\frac{x^2}{3}-\log (1+x)$の$0 \leqq x \leqq 2$における最大値,および最小値を求めよ.
(3)方程式$\displaystyle x-\frac{x^2}{3}=\log (1+x)$は$0<x<2$の範囲に解を1つだけもつことを示せ.
(4)(3)における解を$\alpha \ (0<\alpha<2)$とする.曲線$\displaystyle y=x-\frac{x^2}{3}$と曲線$y=\log (1+x)$で囲まれた図形($0 \leqq x \leqq \alpha$の部分)の面積を$S$とする.また,曲線$\displaystyle y=x-\frac{x^2}{3}$,$y=\log (1+x)$と直線$x=2$で囲まれた図形($\alpha \leqq x \leqq 2$の部分)の面積を$T$とする.$S$と$T$の大小を比較せよ.
鹿児島大学 国立 鹿児島大学 2010年 第1問
次の各問いに答えよ.

(1)正の実数$a$に関する次の各命題の真偽を述べよ.また,真ならば証明し,偽ならば反例をあげよ.

(2)$a$が自然数ならば$\sqrt{a}$は無理数である.
(3)$a$が無理数ならば$\sqrt{a}$も無理数である.

(4)$4$個のさいころを同時に投げるとき,目の和が$7$になる確率を求めよ.
(5)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}=75^\circ,\ \angle \mathrm{B}=60^\circ,\ \mathrm{AB}=1$とする.頂点$\mathrm{A}$を通り辺$\mathrm{BC}$に垂直な直線と$\triangle \mathrm{ABC}$の外接円との交点を$\mathrm{P}$とする.このとき,線分$\mathrm{AP}$の長さを求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。