タグ「証明」の検索結果

177ページ目:全1924問中1761問~1770問を表示)
名古屋工業大学 国立 名古屋工業大学 2010年 第2問
定数$a$,関数$f(x)$,および数列$\{x_n\}$を次のように定める.
\begin{eqnarray}
& & 1<a<2,\quad f(x)=\frac{1}{2}(3x^2-x^3) \nonumber \\
& & x_1=a,\quad x_{n+1}=f(x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \nonumber
\end{eqnarray}

(1)関数$f(x)$の増減を調べよ.
(2)すべての自然数$n$に対して$1<x_n<2$を示せ.
(3)すべての自然数$n$に対して$x_{n+1}>x_n$を示せ.
(4)次の不等式を満たす$n$に無関係な定数$b \ (0<b<1)$があることを示せ.
\[ 2-x_{n+1} \leqq b(2-x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
(5)数列$\{x_n\}$が収束することを示し,その極限値を求めよ.
大分大学 国立 大分大学 2010年 第1問
円周率$\pi$に関して次の不等式が成立することを証明せよ.ただし,数値$\pi=3.141592 \cdots$を使用して直接比較する解答は0点とする.
\[ 3\sqrt{6} -3\sqrt{2} <\pi <24-12\sqrt{3} \]
大分大学 国立 大分大学 2010年 第4問
$0<k<1$である定数$k$について,
\begin{eqnarray}
& & f(x)=\cos x -k \nonumber \\
& & g(x)=\sin x -k \tan x \nonumber
\end{eqnarray}
とおく.

(1)$\displaystyle 0<x < \frac{\pi}{2}$で,方程式$f(x)=0$は,ただ1つの実数解をもつことを示しなさい.
(2)$\displaystyle 0<x < \frac{\pi}{2}$で,方程式$g(x)=0$は,ただ1つの実数解をもつことを示しなさい.
(3)(2)での実数解を$\alpha$とする.定積分
\[ \int_0^\alpha g(x) \, dx \]
を$k$の式で表しなさい.
大分大学 国立 大分大学 2010年 第3問
微分可能な関数$y=f(x)$が次の方程式を満たすとする.
\[ a_nf^{(n)}(x)+a_{n-1}f^{(n-1)}(x)+\cdots +a_1f^{(1)}(x)+a_0f(x)=0 (\text{A}) \]
ここに$n$は自然数,$a_i \ (i=0,\ 1,\ 2,\ \cdots, n)$は実数の定数で,$a_n \neq 0$である.また,$y^{(k)}=f^{(k)}(x)$は$f(x)$の$k$次導関数で$y^{(0)}=f^{(0)}(x)=f(x)$とする.(A)のような方程式を第$n$階微分方程式といい,(A)に対して$t$の$n$次方程式
\[ a_nt^n+a_{n-1}t^{n-1}+\cdots +a_1t+a_0=0 (\text{B}) \]
を(A)の特性方程式という.このとき次の問いに答えよ.

(1)特性方程式(B)の解が実数$r$であるとき,関数$y=e^{rx}$が方程式(A)を満たすことを証明せよ.
(2)$n$次方程式(B)が実数$r$を$k$重解$^{(\text{注})}$にもつとき,次の$t$に関する方程式は$r$を$k-1$重解にもつことを証明せよ.ただし,$k=2,\ 3,\ \cdots$とする.
\[ na_nt^{n-1}+(n-1)a_{n-1}t^{n-2}+\cdots +2a_2t+a_1=0 \]
(注) \quad $t$の$m$次方程式が適当な多項式$Q(t)$を用いて$(t-r)^kQ(t)=0$となるとき,$t=r$をこの方程式の$k$重解と定義する.ただし,$k=1,\ 2,\ \cdots$とする.
(3)実数の定数$r$に対して$x$の関数を$y_i=x^ie^{rx} \ (i=0,\ 1,\ 2,\ \cdots)$とする.このとき,$y_j^{(n)}$を$x,\ y_{j-1}^{(n-1)}$および$y_{j-1}^{(n)}$を用いて表せ.ただし,$j=1,\ 2,\ 3,\ \cdots$とする.
(4)実数$r$が$n$次方程式(B)の$k$重解であるとき$y_i=x^ie^{rx} \ (i=0,\ 1,\ 2,\ \cdots,\ k-1)$が微分方程式(A)を満たすことを証明せよ.ただし,$k$は自然数とする.
京都工芸繊維大学 国立 京都工芸繊維大学 2010年 第1問
$\displaystyle 0<\theta<\frac{\pi}{2}$とする.点Oを中心とする円周上に反時計回りに並んだ5点A,B,C,D,Eがあり,$\angle \text{AOB},\ \angle \text{BOC},\ \angle \text{COD},\ \angle \text{DOE}$はすべて$\theta$に等しい.$\alpha=2\pi-4\theta,\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}},\ t=\cos \theta$とする.

(1)$\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OD}}$および$\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OE}}$を$\overrightarrow{c}$と$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OD}}+\overrightarrow{\mathrm{OE}}=\overrightarrow{\mathrm{0}}$が成り立つとき,$\alpha$は$\theta$に等しいことを示せ.
福井大学 国立 福井大学 2010年 第2問
平面上に$\text{OA}=\text{OB}=1$である鋭角二等辺三角形OABがある.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とし,$k=\overrightarrow{a} \cdot \overrightarrow{b}$とおく.点Aから辺OBに下ろした垂線とOBとの交点をMとし,Mから辺OAに下ろした垂線とOAとの交点をNとする.さらに,線分AMと線分BNの交点をPとするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}=s\overrightarrow{b}$と$\overrightarrow{\mathrm{ON}}=t\overrightarrow{a}$を満たす実数$s,\ t$を$k$を用いて表せ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$k$を用いて表せ.
(3)Pが線分BNを$4:3$に内分するとき,$\triangle$OABは正三角形であることを示せ.
福井大学 国立 福井大学 2010年 第3問
$k$を正の整数とし,$a_1=k,\ a_{n+1}=2a_n+1 \ (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$を考える.以下の問いに答えよ.

(1)すべての$n$に対して,$a_{n+4}-a_n$は15で割り切れることを示せ.
(2)$a_{2010}$が15の倍数となる最小の$k$を求めよ.
鳥取大学 国立 鳥取大学 2010年 第4問
平面上に一辺の長さが1の正五角形があり,その頂点を順にA,B,C,D,Eとする.次の問いに答えよ.

(1)辺BCと線分ADは平行であることを示せ.
(2)線分ACと線分BDの交点をFとする.四角形AFDEはどのような形であるか,その名称と理由を答えよ.
(3)線分AFと線分CFの長さの比を求めよ.
(4)$\overrightarrow{\mathrm{AB}}=\overrightarrow{a},\ \overrightarrow{\mathrm{BC}}=\overrightarrow{b}$とするとき,$\overrightarrow{\mathrm{CD}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
長崎大学 国立 長崎大学 2010年 第5問
$a,\ b$を$a>b>0$を満たす定数とし,
\[ \left\{
\begin{array}{l}
a_1=a, a_{n+1}=a_n^2+b_n^2 \quad (n=1,\ 2,\ 3,\ \cdots) \\
b_1=b, b_{n+1}=2a_nb_n \quad (n=1,\ 2,\ 3,\ \cdots)
\end{array}
\right. \]
で定義される数列$\{a_n\},\ \{b_n\}$を考える.次の問いに答えよ.

(1)数列$\{c_n\}$を$c_n=a_n+b_n \ (n=1,\ 2,\ 3,\ \cdots)$により定義するとき,その一般項$c_n$を$a,\ b$を用いて表せ.
(2)数列$\{a_n\},\ \{b_n\}$の一般項$a_n,\ b_n$を$a,\ b$を用いて表せ.
(3)極限値$\displaystyle \lim_{n \to \infty}\frac{b_n}{a_n}$が存在するかどうかを調べ,存在する場合はその値を求めよ.
(4)無限級数$\displaystyle \sum_{n=1}^\infty a_n$が収束するとき,$a+b<1$が成り立つことを証明せよ.
佐賀大学 国立 佐賀大学 2010年 第2問
座標平面上で,直線$\ell:y=mx$に関する対称移動によって,点P$(x,\ y)$が点Q$(x^\prime,\ y^\prime)$に移ったとする.ただし,$m$は0でない定数とし,点Pは$\ell$上にないとする.このとき,次の問いに答えよ.

(1)線分PQの中点が$\ell$上にあることと,線分PQが$\ell$と垂直に交わっていることを利用して
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right)=\frac{1}{1+m^2} \left( \begin{array}{cc}
1-m^2 & 2m \\
2m & m^2-1
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
が成り立つことを示せ.
(2)直線$\displaystyle y=\frac{1}{\sqrt{3}}x,\ y=-\frac{1}{\sqrt{3}}x$に関する対称移動を表す1次変換をそれぞれ$f,\ g$とする.このとき,合成変換$g \circ f$および$f \circ g$を表す行列を求めよ.
(3)(2)で求めた2つの行列は,原点Oを中心とし,角$\theta$だけ回転する1次変換を表す行列である.それぞれの$\theta$を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。