タグ「証明」の検索結果

168ページ目:全1924問中1671問~1680問を表示)
神戸大学 国立 神戸大学 2010年 第2問
$p$を3以上の素数,$a,\ b$を自然数とする.以下の問に答えよ.ただし,自然数$m,\ n$に対し,$mn$が$p$の倍数ならば,$m$または$n$は$p$の倍数であることを用いてよい.

(1)$a+b$と$ab$がともに$p$の倍数であるとき,$a$と$b$はともに$p$の倍数であることを示せ.
(2)$a+b$と$a^2 +b^2$がともに$p$の倍数であるとき,$a$と$b$はともに$p$の倍数であることを示せ.
(3)$a^2 +b^2$と$a^3 +b^3$がともに$p$の倍数であるとき,$a$と$b$はともに$p$の倍数であることを示せ.
神戸大学 国立 神戸大学 2010年 第3問
$\displaystyle f(x) =\frac{\log x}{x},\ g(x) = \frac{2 \log x}{x^2} \ (x > 0)$とする.以下の問に答えよ.ただし,自然
対数の底$e$について,$e=2.718 \cdots$であること,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$であることを証明なしで用いてよい.

(1)2曲線$y = f(x)$と$y = g(x)$の共有点の座標をすべて求めよ.
(2)区間$x>0$において,関数$y = f(x)$と$y = g(x)$の増減,極値を調べ,2曲線$y = f(x),\ y = g(x)$のグラフの概形をかけ.グラフの変曲点は求めなくてよい.
(3)区間$1 \leqq x \leqq e$において,2曲線$y = f(x)$と$y = g(x)$,および直線$x = e$で囲まれた図形の面積を求めよ.
神戸大学 国立 神戸大学 2010年 第3問
$a,\ b$を自然数とする.以下の問に答えよ.

(1)$ab$が3の倍数であるとき,$a$または$b$は3の倍数であることを示せ.
(2)$a+b$と$ab$がともに3の倍数であるとき,$a$と$b$はともに3の倍数であることを示せ.
(3)$a+b$と$a^2 +b^2$がともに3の倍数であるとき,$a$と$b$はともに3の倍数であることを示せ.
東北大学 国立 東北大学 2010年 第1問
$f(x) = x^3$とするとき,以下の問いに答えよ.

(1)$0 \leqq a < x < y$を満たすすべての$a,\ x,\ y$に対して
\[ \frac{f(x)- f(a)}{x-a} < \frac{f(y)- f(x)}{y-x} \]
が成り立つことを示せ.
(2)$y < x < b$を満たすすべての$x,\ y$に対して
\[ f(x) > \frac{(x-y)f(b) + (b-x)f(y)}{b-y} \]
が成り立つような$b$の範囲を求めよ.
東北大学 国立 東北大学 2010年 第2問
放物線$C : y = x^2$に対して,以下の問いに答えよ.

(1)$C$上の点P$(a,\ a^2)$を通り,Pにおける$C$の接線に直交する直線$\ell$の方程式を求めよ.
(2)$\ell$を(1)で求めた直線とする.$a \neq 0$のとき,直線$x = a$を$\ell$に関して対称に折り返して得られる直線$m$の方程式を求めよ.
(3)(2)で求めた直線$m$は$a$の値によらず定点Fを通ることを示し,Fの座標を求めよ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
北海道大学 国立 北海道大学 2010年 第2問
実数を成分とする行列$A =\left(
\begin{array}{cc}
a & b \\
c & d
\end{array}
\right)$が$A^2 -A+E = O$を満たすとき,以下の問いに答えよ.ただし,$E$は単位行列,$O$は零行列である.

(1)$A$は逆行列をもつことを示せ.
(2)$a+d$と$ad-bc$を求めよ.
(3)$b>0,\ A^{-1}=\left(
\begin{array}{cc}
a & c \\
b & d
\end{array}
\right)$のとき,$A$を求めよ.
北海道大学 国立 北海道大学 2010年 第3問
正の実数$r$と$\displaystyle -\frac{\pi}{2} < \theta < \frac{\pi}{2}$の範囲の実数$\theta$に対して
\[ a_0 = r \cos \theta,\quad b_0 = r \]
とおく.$a_n,\ b_n \ (n = 1,\ 2,\ 3,\ \cdots)$を漸化式
\[ a_n = \frac{a_{n-1} +b_{n-1}}{2},\quad b_n = \sqrt{a_nb_{n-1}} \]
により定める.以下の問いに答えよ.

(1)$\displaystyle \frac{a_1}{b_1},\ \frac{a_2}{b_2}$を$\theta$で表せ.
(2)$\displaystyle \frac{a_n}{b_n}$を$n$と$\theta$で表せ.
(3)$\theta \neq 0$のとき
\[ \lim_{n \to \infty} a_n= \lim_{n \to \infty} b_n = \frac{r\sin \theta}{\theta} \]
を示せ.
大阪大学 国立 大阪大学 2010年 第2問
連立方程式
\[ \left\{
\begin{array}{l}
2^x+3^y=43 \\
\log_2 x- \log_3 y=1
\end{array}
\right. \]
を考える.

(1)この連立方程式を満たす自然数$x,\ y$の組を求めよ.
(2)この連立方程式を満たす正の実数$x,\ y$は,(1)で求めた自然数の組以外に存在しないことを示せ.
北海道大学 国立 北海道大学 2010年 第4問
$0 \leqq x \leqq 1$に対して
\[ f(x)=\int_0^1 e^{-|t-x|}t(1-t) \, dt \]
と定める.ただし,$e=2.718 \cdots$は自然対数の底である.

(1)不定積分$\displaystyle I_1=\int te^t \, dt,\ I_2=\int t^2e^t \, dt$を求めよ.
(2)$f(x)$を$x$の指数関数と多項式を用いて表せ.
(3)$f(x)$は$\displaystyle x=\frac{1}{2}$で極大となることを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。