タグ「証明」の検索結果

160ページ目:全1924問中1591問~1600問を表示)
東京海洋大学 国立 東京海洋大学 2011年 第3問
三角形$\mathrm{OAB}$において,次を証明せよ.

(1)ベクトル$\overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$とベクトル$\overrightarrow{\mathrm{OB}}+t \overrightarrow{\mathrm{OA}}$の長さが等しくなるような$\pm 1$以外の実数$t$が存在することは$\mathrm{OA}=\mathrm{OB}$であるための必要十分条件である.
(2)ベクトル$\overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$とベクトル$\overrightarrow{\mathrm{OB}}+t \overrightarrow{\mathrm{OA}}$が垂直になるような$t<-1$である実数$t$が存在することは$\angle \mathrm{AOB}<90^\circ$であるための必要十分条件である.
東京海洋大学 国立 東京海洋大学 2011年 第5問
数列$\{a_n\}$を$\displaystyle a_n=\frac{1}{n}\sum_{k=1}^n \left( p+\frac{k}{n} \right)^2 (n=1,\ 2,\ \cdots)$で定める.ただし,$p$は実数とする.このとき,次の問に答えよ.

(1)すべての実数$p$に対して,$\displaystyle a_n \geqq \frac{1}{12} \left( 1-\frac{1}{n^2} \right) (n=1,\ 2,\ \cdots)$が成り立つことを示せ.
(2)$\displaystyle p=\frac{5}{3}$のとき,$a_n<5$となる最小の$n$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第1問
行列$A=\left( \begin{array}{cc}
1 & 4 \\
4 & 1
\end{array} \right)$に対し,$A^n=\left( \begin{array}{cc}
a_n & b_n \\
c_n & d_n
\end{array} \right)$,$\displaystyle p_n=\frac{a_n}{c_n} (n=1,\ 2,\ 3,\ \cdots)$とおく.

(1)数学的帰納法を用いて,$a_n=d_n$および$b_n=c_n$が成り立つことを示せ.
(2)$p_{n+1}$を$p_n$を用いて表せ.
(3)$\displaystyle q_n=\frac{1}{p_n-1}$とおくとき,$q_{n+1}$を$q_n$を用いて表せ.
(4)数列$\{p_n\}$の一般項を求めよ.
大分大学 国立 大分大学 2011年 第1問
次の問いに答えよ.

(1)正弦定理の証明をせよ.ただし,鋭角三角形の場合だけの証明でよい.
(2)実数$x_i,\ y_i,\ i=1,\ 2,\ \cdots,\ n$に対して次の不等式を証明せよ.ただし,$n$は自然数である.
\[ \sum_{i=1}^n x_iy_i \leqq \sqrt{\sum_{i=1}^n {x_i}^2} \sqrt{\sum_{i=1}^n {y_i}^2} \]
大分大学 国立 大分大学 2011年 第2問
$x$の三次関数$y=ax^3+bx^2+cx+d$のグラフはある点に関して対称であることを証明せよ.ここに,$a,\ b,\ c,\ d$は定数で$a \neq 0$とする.
愛媛大学 国立 愛媛大学 2011年 第2問
次の問いに答えよ.

(1)関数$y=x^2-3x+7-3 |x-2|$のグラフをかけ.
(2)$a>0$とする.関数$y=(a-x)\sqrt{x} \ (0<x<a)$の最大値が$2$であるとき,$a$の値を求めよ.
(3)自然数$n$について,等式
\[ 1+2x+3x^2+\cdots +nx^{n-1}=\frac{1-(n+1)x^n+nx^{n+1}}{(1-x)^2} \]
が成り立つことを,数学的帰納法を用いて示せ.ただし,$x \neq 1$とする.
(4)$i$を虚数単位とする.等式$\displaystyle (2+3i)(5a-2i)=\frac{b}{1-i}$を満たす実数$a$と実数$b$の値を求めよ.
(5)次の不定積分を求めよ.
\[ (ⅰ) \int \frac{1}{\tan 4x} \, dx \qquad (ⅱ) \int x \sqrt{1-5x} \, dx \]
愛媛大学 国立 愛媛大学 2011年 第3問
単位行列$E$と行列$\displaystyle A=\frac{1}{4} \left( \begin{array}{cc}
1 & -\sqrt{3} \\
-\sqrt{3} & -1
\end{array} \right)$について,次の問いに答えよ.

(1)$A^2=pE+qA$となる実数$p,\ q$の値を求めよ.
(2)自然数$n$に対して,関係式
\[ E+A+A^2+\cdots +A^{2n-1}+A^{2n}=x_nE+y_nA \]
をみたす実数$x_n,\ y_n$を,$n$を用いて表せ.
(3)極限値$\displaystyle \lim_{n \to \infty}x_n,\ \lim_{n \to \infty}y_n$を求めよ.
(4)実数$x,\ y$をそれぞれ$\displaystyle x=\lim_{n \to \infty}x_n,\ y=\lim_{n \to \infty}y_n$で定めるとき
\[ xE+yA=(E-A)^{-1} \]
であることを示せ.
愛媛大学 国立 愛媛大学 2011年 第5問
関数$f(x)=\cos x-x \sin x,\ g_n(x)=(x+n \pi)\sin x-\cos x \ (n=1,\ 2,\ 3,\ \cdots)$について,次の問いに答えよ.ただし,必要があれば,$\displaystyle 0<x<\frac{\pi}{2}$を満たすすべての$x$について$\tan x>x$が成り立つことを用いてよい.

(1)すべての自然数$n$,実数$x$に対して$g_n(x)=(-1)^{n+1}f(x+n \pi)$が成り立つことを示せ.
(2)自然数$n$に対して,方程式$g_n(x)=0$は$0 \leqq x \leqq \pi$の範囲においてただ$1$つの解をもつことを示せ.
(3)(2)におけるただ$1$つの解を$x_n$とする.$x_n$は$\displaystyle 0<x_n<\frac{1}{n\pi}$を満たすことを示せ.
(4)$y_n=n\pi+x_n \ (n=1,\ 2,\ 3,\ \cdots)$とおく.定積分
\[ S_n=\int_{y_n}^{y_{n+1}}|f(x)| \, dx \]
を,$n,\ x_n$および$x_{n+1}$を用いて表せ.
(5)極限$\displaystyle \lim_{n \to \infty}\frac{S_n}{n}$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第3問
$f(x)=\displaystyle\frac{\log x}{x}$とする.以下の問に答えよ.

(1)$y=f(x)$のグラフの概形を次の点に注意して描け:$f(x)$の増減,グラフの凹凸,$x$→$+0$,$x$→$\infty$のときの$f(x)$の挙動.
(2)$n$を自然数とする.$k=1,\ 2,\ \cdots,\ n$に対して$x$が$\displaystyle e^{\frac{k-1}{n}} \leqq x \leqq e^{\frac{k}{n}}$を動くときの$f(x)$の最大値を$M_k$,最小値を$m_k$とし,
\[ A_n = \sum_{k=1}^n M_k(e^{\frac{k}{n}}- e^{\frac{k-1}{n}}) \]
\[ B_n = \sum_{k=1}^n m_k(e^{\frac{k}{n}}- e^{\frac{k-1}{n}}) \]
とおく.$A_n,\ B_n$を求めよ.
(3)$\displaystyle\lim_{n \to \infty} A_n$および$\displaystyle\lim_{n \to \infty} B_n$求めよ.
(4)各$n$に対して$\displaystyle B_n < \int_1^e f(x)\, dx < A_n$であることを示せ.
早稲田大学 私立 早稲田大学 2011年 第2問
次の問に答えよ.

(1)$a,\ b$は整数で,$2$次方程式
\[ x^2 + ax + b= 0 \dotnum{A} \]
が異なる$2$つの実数解$\alpha,\ \beta$をもつとする.このとき,$\alpha,\ \beta$はともに整数であるか,ともに無理数であるかのいずれかであることを証明する.以下の問に答え,証明を完成させよ.\\
\quad まず,$b=0$のときは,$x^2+ax=0$であるから\maru{A}は整数解$0,\ -a$をもつ.以下では$ b \neq 0$とする.\\
\quad 解と係数の関係より,$\alpha + \beta = -a,\ \alpha\beta = b$であり,これらは整数である.有理数と無理数の和は有理数でなく,整数と整数以外の有理数の和は整数ではないという事実を用いると,$\alpha,\ \beta$がともに整数以外の有理数であるとして矛盾を導けばよい.\\
\quad そこで,$\alpha,\ \beta$が2以上の整数$p_1,\ p_2$と0でない整数$q_1,\ q_2$を用いて,既約分数
\[ \alpha = \frac{q_1}{p_1},\quad \beta = \frac{q_2}{p_2} \]
で表されると仮定する.ここに,$\displaystyle\frac{q_i}{p_i}\ (i=1,\ 2)$が既約分数であるとは,$p_i$と$|q_i|$の最大公約数が1であることをいう.このとき,
\[ \alpha + \beta = \frac{p_2q_1+p_1q_2}{p_1p_2} \cdots\cdots① \]
\[ \alpha\beta = \frac{q_1q_2}{p_1p_2} \cdots\cdots② \]
である.

(i) $①$において,$\alpha+\beta$が整数であることを用いて,$p_1=p_2$であることを示せ.
(ii) $②$において,$\alpha\beta$が整数であることと問\maru{1}の結果から,既約分数の仮定に矛盾することを示せ.

$(ⅱ)$の結果から,$\alpha,\ \beta$はともに整数であるか,ともに無理数であることが示された.
(2)$c$が自然数のとき,$\sqrt{c}$は自然数であるか無理数であることを証明せよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。