タグ「証明」の検索結果

158ページ目:全1924問中1571問~1580問を表示)
福井大学 国立 福井大学 2011年 第4問
関数$f_n(x) \ (n=0,\ 1,\ 2,\ 3,\ \cdots)$は次の条件を満たしている.

$(ⅰ)$ $f_0(x)=e^{2x}+1$
$(ⅱ)$ $\displaystyle f_n(x)=\int_0^x (n+2t)f_{n-1}(t) \, dt-\frac{2x^{n+1}}{n+1} \quad (n=1,\ 2,\ 3,\ \cdots)$

このとき以下の問いに答えよ.

(1)$f_1(x),\ f_2(x)$を求めよ.
(2)$f_n(x)$の具体的な形を推測し,その結果を数学的帰納法で証明せよ.
(3)$\displaystyle \sum_{n=1}^\infty \left\{ f_n^\prime \left( \frac{1}{2} \right) \right\}$を求めよ.ただし,$0<r<1$に対して$\displaystyle \lim_{n \to \infty}nr^n=0$となることを用いてよい.
京都教育大学 国立 京都教育大学 2011年 第6問
$-1 \leqq a \leqq 1$として,次の問に答えよ.

(1)直線$y=a$と半円$x^2+y^2=1 \ (x \geqq 0)$が,ただ1つの点を共有することを示せ.
(2)方程式$\sin x=a$は閉区間$\displaystyle \left[ -\frac{\pi}{2},\ \frac{\pi}{2} \right]$の範囲でただ1つの実数解をもつことを示せ.
(3)$-1 \leqq x \leqq 1$とする.次の条件
\[ x=\sin y,\quad -\frac{\pi}{2} \leqq y \leqq \frac{\pi}{2} \]
をみたす$y$を$g(x)$とおく.曲線$y=g(x) \ (-1 \leqq x \leqq 1)$の概形をかけ.
(4)曲線$y=g(x)$と2直線$\displaystyle x=\frac{1}{2},\ y=0$で囲まれる図形の面積を求めよ.ただし,$g(x)$は(3)で定義されたものとする.
滋賀医科大学 国立 滋賀医科大学 2011年 第3問
文字$x,\ y,\ z$の任意の整式$A$に対して,$x,\ y,\ z$をそれぞれ$\sin \theta,\ \cos \theta,\ \tan \theta$に置き換えて得られる$\theta$の関数を$\widetilde{A}(\theta)$で表す.例えば,
\[ \begin{array}{lll}
P=x^5+z^4-xyz & \text{ならば} & \widetilde{P}(\theta)=\sin^5 \theta+\tan^4 \theta-\sin \theta \cos \theta \tan \theta, \\
P=x^2+y^2,\ Q=1 & \text{ならば} & \widetilde{P}(\theta)=\sin^2 \theta+\cos^2 \theta=1=\widetilde{Q}(\theta)
\end{array} \]
である.ただし$\theta$の関数の定義域は$\displaystyle 0 \leqq \theta \leqq 2\pi,\ \theta \neq \frac{\pi}{2},\ \frac{3\pi}{2}$とする.

(1)$P$を$x,\ y,\ z$の整式とする.$\widetilde{P}(\theta)=\widetilde{Q}(\theta)$となる$y,\ z$の整式$Q$が存在することを示せ.
(2)$P$を$x,\ y,\ z$の整式とする.$\widetilde{P}(0)=\widetilde{P}(\pi)$ならば,$\widetilde{P}(\theta)=\widetilde{Q}(\theta)$となる$x,\ z$の整式$Q$が存在することを示せ.
(3)$P$を$x,\ y,\ z$の整式とする.$\displaystyle \theta \to \frac{\pi}{2}$のとき,および$\displaystyle \theta \to \frac{3\pi}{2}$のとき,$\widetilde{P}(\theta)$がそれぞれ収束するならば,$\widetilde{P}(\theta)=\widetilde{Q}(\theta)$となる$x,\ y$の整式$Q$が存在することを示せ.収束とは,一定の実数に限りなく近づくことである.
熊本大学 国立 熊本大学 2011年 第3問
次の条件によって定められる関数の列$f_n(x) \ (n=0,\ 1,\ 2,\ 3,\ \cdots)$を考える.
\begin{align}
& f_0(x)=1 \nonumber \\
& f_n(x)=1-\int_0^x tf_{n-1}(t) \, dt \quad (n=1,\ 2,\ 3,\ \cdots) \nonumber
\end{align}
このとき,以下の問いに答えよ.

(1)$f_1(x),\ f_2(x),\ f_3(x)$を求めよ.
(2)$n \geqq 1$のとき,$f_n(x)-f_{n-1}(x)$は$x$についての次数が$2n$の単項式となることを示し,その単項式を求めよ.
(3)$n \geqq 1$のとき,不等式
\[ \frac{1}{2} \leqq f_n(1) \leqq \frac{5}{8} \]
が成り立つことを示せ.
宮城教育大学 国立 宮城教育大学 2011年 第2問
数列$\{a_n\},\ \{b_n\}$を次の関係式により定義する.
\begin{align}
& a_1=3,\ b_1=1, \nonumber \\
& a_{n+1}=\displaystyle\frac{3a_n+13b_n}{2},\quad b_{n+1}=\displaystyle\frac{a_n+3b_n}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \nonumber
\end{align}
このとき,次の問いに答えよ.

(1)数学的帰納法を用いて,$a_n+b_n,\ a_n-b_n$はともに正の偶数であることを証明せよ.
(2)$c_n=a_n+\sqrt{13} \, b_n,\ d_n=a_n-\sqrt{13} \, b_n$とおく.数列$\{c_n\},\ \{d_n\}$の一般項を求めよ.
(3)数列$\{a_n\},\ \{b_n\}$の一般項を求めよ.
宮城教育大学 国立 宮城教育大学 2011年 第4問
関数$f(x)=e^{3x}+e^{-3x}-12(e^x+e^{-x})$を考える.このとき,次の問いに答えよ.

(1)$g(x)=e^x-e^{-x}$とおく.関数$g(x)$は単調増加であることを示せ.
(2)$u=g(x)$とおくとき,$f(x)$の導関数$f^\prime(x)$を$u$を用いて表せ.
(3)関数$y=f(x)$の増減,極値を調べ,そのグラフをかけ.
長崎大学 国立 長崎大学 2011年 第3問
下図の平行六面体$\mathrm{OABC}$-$\mathrm{DEFG}$を考える.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおき,次の問いに答えよ.
(図は省略)

(1)三角形$\mathrm{ACD}$と線分$\mathrm{OF}$との交点を$\mathrm{H}$とする.
\[ \overrightarrow{\mathrm{AH}}=r \overrightarrow{\mathrm{AC}}+s \overrightarrow{\mathrm{AD}},\quad \overrightarrow{\mathrm{OH}}=t \overrightarrow{\mathrm{OF}} \]
をみたす実数$r,\ s,\ t$を求めよ.また,$\mathrm{H}$が三角形$\mathrm{ACD}$の重心であることを示せ.
(2)$\mathrm{H}$は三角形$\mathrm{ODB}$の重心でもあることを示せ.
(3)さらに$\mathrm{OA}=\mathrm{OC},\ \angle \mathrm{AOD}=\angle \mathrm{COD}$ならば,$\overrightarrow{\mathrm{OF}} \perp \overrightarrow{\mathrm{AC}}$であることを示せ.
長崎大学 国立 長崎大学 2011年 第8問
曲線$y=\log x$の接線は常にこの曲線の上側にあることを利用して,次の問いに答えよ.以下,$k$は自然数とする.

(1)点$\mathrm{A}_k(k,\ 0)$を通り$x$軸に垂直な直線と曲線$y=\log x$との交点を${\mathrm{A}_k}^\prime$とし,${\mathrm{A}_k}^\prime$におけるこの曲線の接線を$\ell_k$とする.また,$k \geqq 2$のとき,$\displaystyle \mathrm{B}_k \left( k-\frac{1}{2},\ 0 \right)$,$\displaystyle \mathrm{C}_k \left( k+\frac{1}{2},\ 0 \right)$を通り$x$軸に垂直な直線と接線$\ell_k$との交点をそれぞれ${\mathrm{B}_k}^\prime$,${\mathrm{C}_k}^\prime$とする.四角形$\mathrm{B}_k \mathrm{C}_k {\mathrm{C}_k}^\prime {\mathrm{B}_k}^\prime$の面積を求めよ.
(2)次の2つの値の大小を比較せよ.

(i) $\log k$と$\displaystyle \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \log x \, dx \quad$(ただし,$k \geqq 2$)
(ii) $\displaystyle \frac{\log k+\log (k+1)}{2}$と$\displaystyle \int_k^{k+1} \log x \, dx \quad$(ただし,$k \geqq 1$)

(3)$\displaystyle a_n=\log (n!)-\frac{1}{2}\log n$とおくと,2以上の自然数$n$について,次の不等式が成り立つことを示せ.
\[ \int_{\frac{3}{2}}^n \log x \, dx<a_n<\int_1^n \log x \, dx \]
(4)2以上の自然数$n$について
\[ \left\{
\begin{array}{l}
U_n=\left( n+\displaystyle\frac{1}{2} \right) \log n-n+\displaystyle\frac{3}{2} \left( 1-\log \displaystyle\frac{3}{2} \right) \\
V_n=\left( n+\displaystyle\frac{1}{2} \right) \log n-n+1
\end{array}
\right. \]
とおくとき,次の不等式を示せ.
\[ U_n<\log (n!)<V_n \]
九州工業大学 国立 九州工業大学 2011年 第2問
実数$\theta$に対して,行列$A$を$A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とする.また,$n$を自然数とし,$A$の$n$乗を$A^n$で表す.次に答えよ.

(1)数学的帰納法により,すべての自然数$n$に対して
\[ A^n=\left( \begin{array}{cc}
\cos n\theta & -\sin n\theta \\
\sin n\theta & \cos n\theta
\end{array} \right) \]
が成立することを示せ.
(2)$\displaystyle \theta=\frac{\pi}{12}$とする.ある自然数$n$に対しては,行列$A^n$によって曲線$\displaystyle y=-\frac{1}{2x}$上の点が常に曲線$x^2-y^2=-1$上の点に移される.このような自然数$n$の最小値を求めよ.
九州工業大学 国立 九州工業大学 2011年 第3問
実数$p>0$と関数$f(x)=x^3-x$がある.$2$曲線$C_1:y=f(x)$,$C_2:y=f(x+p)-p$について,次に答えよ.

(1)曲線$C_1$と$C_2$が共有点を$2$個もつときの$p$の範囲を求めよ.
(2)実数$\alpha,\ \beta$に対して
\[ \int_{\alpha}^{\beta}(\beta-x)(x-\alpha) \, dx=\frac{1}{6}(\beta-\alpha)^3 \]
を示せ.
(3)$p$が(1)で求めた範囲を動くとき,曲線$C_1,\ C_2$によって囲まれた図形の面積$S(p)$の最大値を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。