タグ「証明」の検索結果

155ページ目:全1924問中1541問~1550問を表示)
大阪教育大学 国立 大阪教育大学 2011年 第1問
平行四辺形OABCは$\text{OA}=\text{BC}=1,\ \text{OC}=\text{AB}=r,\ \angle \text{AOC}=\theta$を満たす.ただし,$r>0$かつ$0<\theta<\pi$とする.このとき,次の問に答えよ.

(1)$\text{OB}^2+\text{AC}^2$は$\theta$の値によらず一定であることを示し,その値を$r$を用いて表せ.
(2)$\theta$が$0<\theta<\pi$の範囲を動くとき,$\text{OB}+\text{AC}$の最大値とそのときの$\theta$の値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2011年 第1問
$xyz$空間に6点$\text{A}(1,\ 1,\ 0)$,$\text{B}(-1,\ 1,\ 0)$,$\text{C}(-1,\ -1,\ 0)$,$\text{D}(1,\ -1,\ 0)$,$\text{P}(\alpha,\ 0,\ \beta)$,$\text{Q}(-\alpha,\ 0,\ \beta)$が与えられている.ただし,$\alpha,\ \beta$は正の実数とする.
\[ \text{PB}=\text{PC}=\text{BC} \quad \text{かつ} \quad \text{PA}=\text{PD}=\text{PQ} \]
であるとき,以下の問いに答えよ.

(1)$\alpha,\ \beta$を求めよ.
(2)点P$_0(\alpha,\ 0,\ 0)$を考える.Pから直線ABに下ろした垂線と直線ABとの交点をHとし,Pから直線ADに下ろした垂線と直線ADとの交点をKとする.このとき,2つの三角形$\triangle$HP$_0$Pと$\triangle$PP$_0$Kが相似であることを示せ.
奈良教育大学 国立 奈良教育大学 2011年 第1問
以下の設問に答えよ.

(1)初項$a$,公比$r$の無限等比級数は$|\,r\,|<1$のとき収束し,その和が$\displaystyle \frac{a}{1-r}$となることを示せ.
(2)座標平面上で,動点Pが点$(1,\ 1)$から$x$軸の負の向きに1だけ進み,次に$y$軸の負の向きに$\displaystyle \frac{1}{3}$だけ進み,次に$x$軸の負の向きに$\displaystyle \frac{1}{3^2}$だけ進み,次に$y$軸の負の向きに$\displaystyle \frac{1}{3^3}$だけ進む.以下,動点Pがこのような運動を続けるとき,動点Pが限りなく近づく点の座標を求めよ.
宮崎大学 国立 宮崎大学 2011年 第1問
次の各問に答えよ.

(1)次の各命題について,真であれば証明し,偽であれば反例を1つあげよ.

\mon[(A)] 実数$a$について,$\sqrt{a^2}$と$a$は等しい.
\mon[(B)] 正の実数$b$と$c$について,$\sqrt[3]{b+c}$と$\sqrt[3]{b}+\sqrt[3]{c}$は等しくない.
\mon[(C)] 実数$x$について,$|2x-1|=x$ならば$x=1$である.

(2)$\alpha=(\sqrt{3}+1)^x,\ \beta=(\sqrt{3}-1)^x$とするとき,$\alpha\beta=7$となるような$x$の値を求めよ.
大阪教育大学 国立 大阪教育大学 2011年 第4問
次のようなゲームを考える.成功の確率が$p \ (0<p<1)$,失敗の確率が$q \ (=1-p)$であるような試行をAとBの2人が行い,先に成功した方を勝ちとする.なお,Aが勝つ確率がBが勝つ確率より大きいとき,ゲームはAに有利であるといい,Aが勝つ確率とBが勝つ確率が等しいとき,ゲームは公平であるという.このとき,次の問に答えよ.

(1)Aから始めて,以後交互に試行を行う.すなわち,ABABAB$\cdots$という順で試行を行う.このとき,$p$の値にかかわらずゲームはAに有利であることを示せ.
(2)Aから始めるが,Aが1回に対して,Bは2回試行を行えるとする.すなわち,ABBABB$\cdots$という順で試行を行う.$p$がどのような値のとき,ゲームは公平になるか.
(3)(2)において,ゲームが公平であるとき,$q$についての等式$q=q^2+q^4+q^6+\cdots$が成り立つことを示せ.
宮崎大学 国立 宮崎大学 2011年 第2問
座標平面上において,点A$(0,\ 1)$を中心とし原点Oを通る円$C_1$について,点B$(0,\ -1)$から引いた2本の接線の接点をP,Qとする.ただし,点Pの$x$座標は正とする.さらに,$y$軸に関して対称な放物線$C_2$が直線BPと直線BQにそれぞれ点Pと点Qで接するものとする.このとき,次の各問に答えよ.

(1)2点P,Qの座標を求めよ.
(2)放物線$C_2$を表す方程式を求めよ.
(3)点Aから放物線$C_2$上の各点までの距離は1以上であることを示せ.
(4)円$C_1$の原点Oを含む弧PQと放物線$C_2$で囲まれる部分の面積$S$を求めよ.
宮崎大学 国立 宮崎大学 2011年 第4問
座標平面上に点A$(2,\ 0)$をとる.円$C:x^2+y^2=1$上の任意の点P$(\cos \theta,\ \sin \theta) \ (0 \leqq \theta < 2\pi)$における接線を$\ell$とする.直線$\ell$上に点Qを直線AQと$\ell$が直交するようにとる.ただし,直線$\ell$が点Aを通るときは,点Qは点Aであるとする.このとき,次の各問に答えよ.

(1)点Qの座標を,$\theta$を用いて表せ.
(2)線分PQを,点Pが原点Oに一致するように平行移動したとき,点Qが移動した点をR$(\theta)$とする.ただし,点Pと点Qが一致するときは,点R$(\theta)$は原点とする.このとき,点R$(\theta)$の軌跡は円になることを示し,その中心の座標と半径を求めよ.
山形大学 国立 山形大学 2011年 第4問
次の問に答えよ.

(1)自然数$p,\ q$を自然数$m$で割ったときの余りをそれぞれ$r,\ s$とする.このとき,$pq-rs$は$m$の倍数であることを示せ.
(2)$n$が自然数のとき,$3^n$を4で割ったときの余りを求めよ.
(3)$n$を自然数とし,$r$を実数とするとき,二項展開を利用して
\[ \sum_{k=1}^n {}_{2n} \text{C}_{2k-1} \cdot r^{2k-1} \]
を求めよ.
(4)サイコロを$2n$回振り,出た目をすべて掛け合わせた数を$X_n$とする.使用するサイコロの目は1,2,3,4,5,6であり,どの目の出る確率も$\displaystyle \frac{1}{6}$である.このとき,$X_n$を4で割ったときの余りが3である確率$P_n$を求めよ.
鹿児島大学 国立 鹿児島大学 2011年 第3問
四角形$\mathrm{ABCD}$に対して次の$①$と$②$が成り立つとする.
\begin{align}
& \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BC}} = \overrightarrow{\mathrm{CD}} \cdot \overrightarrow{\mathrm{DA}} \qquad\qquad \cdots\cdots① \nonumber \\
& \overrightarrow{\mathrm{DA}} \cdot \overrightarrow{\mathrm{AB}} = \overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{CD}} \qquad\qquad \cdots\cdots② \nonumber
\end{align}
このとき,四角形$\mathrm{ABCD}$は向かい合う辺の長さが等しくなる(すなわち平行四辺形になる)ことを示せ.
福井大学 国立 福井大学 2011年 第1問
以下の問いに答えよ.

(1)$\mathrm{O}$を原点とする座標平面上,直線$y=kx \ (k \text{は定数})$に関する対称移動を$f$で表す.また座標平面上の点$\mathrm{P}$に対して,直線$\mathrm{OP}$を$\mathrm{O}$を中心として角$\displaystyle \frac{\pi}{4}$だけ回転して得られる直線$\ell$に$\mathrm{P}$から下ろした垂線と$\ell$の交点を$\mathrm{Q}$とし,$\mathrm{P}$を$\mathrm{Q}$に移す移動を$g$で表す.ただし$\mathrm{O}$は$g$により$\mathrm{O}$自身に移動するものとする.$f,\ g$をこの順に続けて行って得られる移動(合成変換$g \circ f$)を表す行列を$A$とおくとき,$A$およびその逆行列$A^{-1}$を求めよ.
(2)2次の正方行列$M=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$に対して,$T(M)=a+d,\ D(M)=ad-bc$と定める.このとき以下の命題を証明せよ. \\
「すべての自然数$n$に対して$T(M^n)=\{T(M)\}^n$が成り立つことと,$D(M)=0$であることは,互いに同値である.」
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。