タグ「証明」の検索結果

149ページ目:全1924問中1481問~1490問を表示)
香川大学 国立 香川大学 2011年 第3問
$t$がすべての実数をとるとき,3点A$(t,\ t^2)$,B$(t,\ t-2)$,C$(t+\sqrt{3},\ t^2-t-1)$について,次の問に答えよ.

(1)各実数$t$に対して,AとBは異なる点であることを示せ.
(2)$\triangle$ABCが直角三角形になる$t$をすべて求めよ.
(3)$\triangle$ABCが鋭角三角形になる$t$の範囲を求めよ.
香川大学 国立 香川大学 2011年 第3問
$t$がすべての実数をとるとき,3点A$(t,\ t^2)$,B$(t,\ t-2)$,C$(t+\sqrt{3},\ t^2-t-1)$について,次の問に答えよ.

(1)各実数$t$に対して,AとBは異なる点であることを示せ.
(2)$\triangle$ABCが直角三角形になる$t$をすべて求めよ.
(3)$\triangle$ABCが鋭角三角形になる$t$の範囲を求めよ.
千葉大学 国立 千葉大学 2011年 第10問
三角形$\mathrm{ABC}$の外心を$\mathrm{O}$,重心を$\mathrm{G}$,内心を$\mathrm{I}$とする.

(1)$\displaystyle \overrightarrow{\mathrm{OG}}=\frac{1}{3}\overrightarrow{\mathrm{OA}}$が成り立つならば,三角形$\mathrm{ABC}$は直角三角形であることを証明せよ.
(2)$k$が$\displaystyle k \neq \frac{1}{3}$を満たす実数で,$\displaystyle \overrightarrow{\mathrm{OG}}=k \overrightarrow{\mathrm{OA}}$が成り立つならば,三角形$\mathrm{ABC}$は二等辺三角形であることを証明せよ.
(3)$\overrightarrow{\mathrm{OI}} \cdot \overrightarrow{\mathrm{BC}}=0$が成り立つならば,三角形$\mathrm{ABC}$は二等辺三角形であることを証明せよ.
千葉大学 国立 千葉大学 2011年 第11問
$\displaystyle f(x)=x\int_0^x \frac{dt}{1+t^2}, g(x)=\log (1+x^2) \ (x \text{は実数})$とおく.ただし,$\log x$は$x$の自然対数を表す.

(1)$\displaystyle \int_0^1 f(x) \, dx$の値を求めよ.
(2)$x>0$のとき$f(x) > g(x)$であることを証明せよ.
(3)$\displaystyle \lim_{n \to \infty} \left\{ \left( \frac{1}{n} \sum_{k=1}^n \log (k^2+n^2) \right) -2\log n \right\}$の値を求めよ.
山口大学 国立 山口大学 2011年 第2問
$a$を実数とし,
\[ I=\int_0^\pi (x+a\cos x+a^2 \sin x)^2 \, dx \]
とおく.このとき,次の問いに答えなさい.

(1)$I$を$a$の式で表しなさい.
(2)$\displaystyle I>\frac{\pi}{2}a^4$であることを示しなさい.
富山大学 国立 富山大学 2011年 第2問
$p$を実数とする.すべての実数$x$に対して
\[ u(x)=x^2+p\int_0^1 (1+tx)u(t) \, dt \]
をみたす関数$u(x)$が存在するかどうかを考える.このとき,次の問いに答えよ.

(1)もしこのような$u(x)$が存在すれば,$u(x)$は2次関数であることを示せ.
(2)このような$u(x)$が存在しないような$p$の値をすべて求めよ.
鳥取大学 国立 鳥取大学 2011年 第4問
$x$の関数$f(x)$と$F(x)$を
\[ f(x)=\frac{1}{x^2+1},\quad F(x)=\int_0^x f(t) \, dt \]
により定める.このとき,次の問いに答えよ.

(1)関数$f(x)$の増減,凹凸を調べ,$y=f(x)$のグラフの概形を描け.
(2)$\displaystyle F \left( \frac{1}{\sqrt{3}} \right)$の値を求めよ.
(3)実数$x,\ y$が$|x|<1,\ |y|<1$を満たすとき
\[ F \left( \frac{x+y}{1-xy} \right) =F(x)+F(y) \]
が成り立つことを示せ.
(4)$F(2-\sqrt{3})$の値を求めよ.
香川大学 国立 香川大学 2011年 第1問
放物線$C_1:y=x^2$と定点$\mathrm{P}(a,\ b)$(ただし,$a^2<b$)を通る放物線$C_2:y=-3x^2+2px+q$の交点を$\mathrm{A}$,$\mathrm{B}$とする.点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$\alpha,\ \beta \ (\text{ただし,} \ \alpha < \beta)$とする.$2$つの放物線$C_1,\ C_2$で囲まれた図形の面積を$S$とするとき,次の問に答えよ.

(1)$S$を$a,\ b,\ p$を用いて表せ.
(2)$S$を最小にする$p$とその最小値を$a,\ b$を用いて表せ.
(3)$\mathrm{M}$を線分$\mathrm{AB}$の中点とする.(2)のとき,線分$\mathrm{PM}$の長さを$a,\ b$を用いて表せ.
(4)(2)のとき,点$\mathrm{P}$における放物線$C_2$の接線$\ell$と直線$\mathrm{AB}$は平行であることを示せ.
東京医科歯科大学 国立 東京医科歯科大学 2011年 第1問
ある硬貨を投げたとき,表と裏がそれぞれ確率$\displaystyle \frac{1}{2}$で出るとする.この硬貨を投げる操作を繰り返し行い,3回続けて表が出たときこの操作を終了する.自然数$n$に対し,

操作がちょうど$n$回目で終了となる確率を$P_n$
操作が$n$回以上繰り返される確率を$Q_n$

とする.このとき以下の各問いに答えよ.

(1)$P_3,\ P_4,\ P_5,\ P_6,\ P_7$をそれぞれ求めよ.
(2)$Q_6,\ Q_7$をそれぞれ求めよ.
(3)$n \geqq 5$のとき,$Q_n-Q_{n-1}$を$Q_{n-4}$を用いて表せ.
(4)$n \geqq 4$のとき,$\displaystyle Q_n < \left( \frac{3}{4} \right)^{\frac{n-3}{4}}$が成り立つことを示せ.
山口大学 国立 山口大学 2011年 第4問
図のように東西に6本,南北に10本の道がある.東西の道と南北の道の出会う地点を交差点とよび,隣どうしの交差点を結ぶ道を区間ということにする.$\mathrm{A}$地点から$\mathrm{B}$地点に進むとき,次の問いに答えなさい.ただし,どの交差点においても,東西および北のいずれかに進むことはできるが,南に進むことはできないとする.また,後戻りもできないとする.図の中の太線は道順の例を示したものである.

(1)$\mathrm{A}$地点から$\mathrm{B}$地点へ行く道順の総数を求めなさい.
(2)$\mathrm{C}$地点を通って,$\mathrm{A}$地点から$\mathrm{B}$地点へ行く道順の総数を求めなさい.
(3)$\mathrm{A}$地点から$\mathrm{B}$地点まで16区間で行く道順の総数を求めなさい.
(図は省略)
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。