タグ「証明」の検索結果

145ページ目:全1924問中1441問~1450問を表示)
広島大学 国立 広島大学 2011年 第2問
次の問いに答えよ.

(1)$\displaystyle \log_2 3 = \frac{m}{n}$を満たす自然数$m,\ n$は存在しないことを証明せよ.
(2)$p,\ q$を異なる自然数とするとき,$p \log_2 3$と$q \log_2 3$の小数部分は等しくないことを証明せよ.
(3)$\log_2 3$の値の小数第1位を求めよ.
金沢大学 国立 金沢大学 2011年 第3問
次の問いに答えよ.

(1)$x \geqq 0$のとき,不等式$\displaystyle 1-\cos \frac{\pi}{2} \leqq \frac{x^2}{8}$を示せ.
(2)$\displaystyle I_n = \int_0^2 x^ne^x \, dx \quad (n=1,\ 2,\ 3,\ \cdots)$とおく.$I_1$の値を求めよ.さらに,等式$I_n=2^n e^2-nI_{n-1} \quad (n=2,\ 3,\ 4,\ \cdots)$を示せ.
(3)$I_2,\ I_3,\ I_4$および$I_5$の値を求めよ.
(4)不等式$\displaystyle \int_0^4 \left( 1-\cos \frac{x}{2} \right) e^{\sqrt{x}} \, dx \leqq -2e^2+30$を示せ.
金沢大学 国立 金沢大学 2011年 第4問
次の問いに答えよ.

(1)自然数$n$に対して,$\displaystyle \int_n^{n+1} \frac{1}{x} \, dx$を求めよ.また
\[ \frac{1}{n+1} < \log (n+1) -\log n < \frac{1}{n} \]
を示せ.
(2)2以上の自然数$n$に対して
\[ \log (n+1) < \sum_{k=1}^n \frac{1}{k} < 1+\log n \]
を示せ.
(3)2以上の自然数$n$に対して
\[ \sum_{k=1}^n \frac{1}{ee^{\frac{1}{2}}e^{\frac{1}{3}} \cdots e^{\frac{1}{k}}} > \frac{1}{e} \log (n+1) \]
を示せ.
九州大学 国立 九州大学 2011年 第3問
平面上に直角三角形$\mathrm{ABC}$があり,その斜辺$\mathrm{BC}$の長さを$2$とする.また,点$\mathrm{O}$は$4 \overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}}$をみたしているとする.このとき,以下の問いに答えよ.

(1)辺$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,点$\mathrm{A}$は線分$\mathrm{OM}$の中点となることを示せ.
(2)$|\overrightarrow{\mathrm{OB}}|^2 + |\overrightarrow{\mathrm{OC}}|^2=10$となることを示せ.
(3)$4|\overrightarrow{\mathrm{PA}}|^2-|\overrightarrow{\mathrm{PB}}|^2-|\overrightarrow{\mathrm{PC}}|^2=-4$をみたす点を$\mathrm{P}$とするとき,$|\overrightarrow{\mathrm{OP}}|$の値を求めよ.
弘前大学 国立 弘前大学 2011年 第3問
次の問いに答えよ.ただし,$e$は自然対数の底である.

(1)すべての実数$x$に対して,次の不等式を証明せよ.
\[ 1-x^2 \leqq e^{-x^2} \leqq 1 \]
(2)極限$\displaystyle \lim_{n \to \infty} \int_0^1 x^2e^{-(\frac{x}{n})^2} \; dx$を求めよ.
岩手大学 国立 岩手大学 2011年 第2問
以下の問いに答えよ.

(1)自然数$n$に関する次の命題を証明せよ.

(i) $n$を$3$で割った余りが1ならば,$n^2$を$3$で割った余りは$1$である.
(ii) $n$が$3$の倍数であることは,$n^2$が$3$の倍数であるための必要十分条件である.

(2)$100$から$999$までの$3$桁の自然数について,次の問いに答えよ.

(i) $3$種類の数字が現れるものは何個あるか.
\mon[$(ⅱ)$)] $0$が現れないものは何個あるか.
(iii) $0$または$1$が現れるものは何個あるか.

(3)$1$から$49$までの自然数からなる集合を全体集合$U$とする.$U$の要素のうち,$50$との最大公約数が$1$より大きいもの全体からなる集合を$V$,また,$U$の要素のうち,偶数であるもの全体からなる集合を$W$とする.いま$A$と$B$は$U$の部分集合で,次の$2$つの条件を満たすものとする.

\mon[(ア)] $A \cup \overline{B}=V$
\mon[(イ)] $\overline{A} \cap \overline{B} = W$

このとき,集合$A$の要素をすべて求めよ.ただし,$\overline{A}$と$\overline{B}$はそれぞれ$A$と$B$の補集合とする.
弘前大学 国立 弘前大学 2011年 第4問
細長い長方形の紙があり,短い方の辺の長さが$a$で長い方が$9a$であったとする.下図のように,この長方形の1つの角(かど)を反対側の長い方の辺に接するように折る.図に示した2つの三角形A,Bについて,次の問いに答えよ.

(1)三角形Aの面積の最大値を求めよ.
(2)三角形Bの面積の最小値を求めよ.

\setlength\unitlength{1truecm}
(図は省略)
弘前大学 国立 弘前大学 2011年 第6問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が次の条件を満たしているものとする.
\[ A \left( \begin{array}{c}
1 \\
1
\end{array} \right) = \left( \begin{array}{c}
\sqrt{\frac{1}{2}} \\
\sqrt{\frac{3}{2}}
\end{array} \right) \quad A \left( \begin{array}{c}
-1 \\
1
\end{array} \right) = \left( \begin{array}{c}
-\sqrt{\frac{3}{2}} \\
\sqrt{\frac{1}{2}}
\end{array} \right) \]
このとき,次の問いに答えよ.

(1)$A$および$A^2$を求めよ.
(2)Oを座標平面上の原点とし,Oと異なる点P$(x_1,\ y_1)$があり,他の2点Q$(x_2,\ y_2)$,R$(x_3,\ y_3)$に対して次の関係があるとする.
\[ \left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right) = A^3 \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right) \qquad \left( \begin{array}{c}
x_3 \\
y_3
\end{array} \right) = A^{-1} \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right) \]
このとき,三角形OQRが正三角形であることを証明せよ.
(3)点P,Qは(2)と同じものとする.$\angle \text{OPQ}$の大きさを求めよ.
弘前大学 国立 弘前大学 2011年 第1問
次の問いに答えよ.

(1)$0 \leqq \theta < 2\pi$のとき,方程式
\[ 2 \sin 2\theta = \tan \theta + \frac{1}{\cos \theta} \]
を解け.
(2)正四面体ABCDにおいて,$\overrightarrow{\mathrm{AB}} = \overrightarrow{b},\ \overrightarrow{\mathrm{AC}} = \overrightarrow{c},\ \overrightarrow{\mathrm{AD}} = \overrightarrow{d}$とし,辺AB,AC,CD,BDの中点をそれぞれP,Q,R,Sとする.このとき4点P,Q,R,Sは同一平面上にあることを示し,さらに四角形PQRSは正方形になることを示せ.
弘前大学 国立 弘前大学 2011年 第3問
曲線$y = x^3 +4x^2 -x$と曲線$y = x^2 +3$の3つの交点を$(x_1,\ y_1),\ (x_2,\ y_2),\ (x_3,\ y_3)$とおく.ただし$x_1 < x_2 < x_3$とする.次の問いに答えよ.

(1)2点$(x_1,\ y_1)$と$(x_3,\ y_3)$を結ぶ直線を$L$とする.このとき,直線$L$と曲線$y = x^2+3$で囲まれた部分$D$の面積を求めよ.
(2)曲線$y = x^2 +3$上の2点$(x_1,\ y_1),\ (x_3,\ y_3)$におけるこの曲線の接線をそれぞれ$L_1,\ L_2$とする.2直線$L_1$と$L_2$の交点を通り$y$軸に平行な直線を$L_0$とする.このとき,直線$L_0$は,(1)で求めた部分$D$の面積を二等分することを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。