タグ「証明」の検索結果

141ページ目:全1924問中1401問~1410問を表示)
岐阜薬科大学 公立 岐阜薬科大学 2012年 第6問
円$x^2+(y-a)^2=r^2$で囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積を$V(a)$とするとき,次の問いに答えよ.ただし,$a,\ r$は正の実数とする.

(1)$a \geqq r$のとき,$V(a)$を求めよ.
(2)$0<a<r$とする.

(i) $\displaystyle 0<\theta<\frac{\pi}{2}$のとき,$\sin \theta<\theta<\tan \theta$が成り立つ.このことを用いて,次の不等式が成り立つことを示せ.
\[ \frac{(r+a) \sqrt{r^2-a^2}}{2}<\int_0^{\sqrt{r^2-a^2}} \sqrt{r^2-x^2} \, dx<\frac{(r^2+a^2) \sqrt{r^2-a^2}}{2a} \]
(ii) $(ⅰ)$の結果を用いて,
\[ \frac{2\pi (a-r)(a+r) \sqrt{r^2-a^2}}{3}<V(a)-2\pi^2ar^2<\frac{2\pi (a-r)(a-2r) \sqrt{r^2-a^2}}{3} \]
が成り立つことを示せ.
奈良県立医科大学 公立 奈良県立医科大学 2012年 第2問
$n$を$3$以上の整数とし,$n$個の整数$a_1,\ a_2,\ \cdots,\ a_n$は以下の$3$条件を満たすとする.

条件$(ⅰ)$:$a_1 \geqq 2$
条件$(ⅱ)$:$a_1 \geqq a_2 \geqq \cdots \geqq a_n$
条件$(ⅲ)$:$1 \leqq i<j \leqq n$を満たす任意の整数$i,\ j$に対して,不等式
\[ a_i+a_j>0 \]
が成り立つ.

このとき,不等式
\[ \sum_{i=1}^n a_i \geqq n \]
が成り立つことを証明せよ.また,この不等式において等号が成り立つ場合の$n$の値,および$n$個の整数の組$(a_1,\ a_2,\ \cdots,\ a_n)$をすべて求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2012年 第4問
整数$m$が与えられたとき,$x$に関する整数係数の$2$つの整式$f(x)$,$g(x)$が関係式
\[ f(x) \equiv g(x) \pmod m \]
を満たすとは,等式$f(x)-g(x)=mh(x)$を満たすような整数係数の整式$h(x)$が存在することである.

(1)$f(x),\ g(x),\ F(x),\ G(x)$を整数係数の整式とする.もし,ある整数$m$について関係式$f(x) \equiv g(x) \pmod m$,かつ$F(x) \equiv G(x) \pmod m$が満たされるならば,関係式$f(x)+F(x) \equiv g(x)+G(x) \pmod m$,かつ$f(x)F(x) \equiv g(x)G(x) \pmod m$が満たされることを証明せよ.
(2)正整数$p (>1)$を素数とする.$p$より小さい任意の正整数$i$に対して二項係数$\comb{p}{i}$は$p$の倍数であることを証明せよ.
(3)正整数$p (>1)$を素数とする.任意の正整数$n$について,関係式
\[ (1+x)^{p^n} \equiv 1+x^{p^n} \pmod p \]
が満たされることを証明せよ.
(4)正整数$p (>1)$を素数とし,$n$を$2$以上の正整数とする.$n-1$個の二項係数$\comb{n}{i} (1 \leqq i \leqq n-1)$がすべて$p$の倍数であるための必要十分条件は,整数$n$が素数$p$の正べきである(すなわち,適当な正整数$k$を用いて$n=p^k$と表せる)ことを証明せよ.
福島県立医科大学 公立 福島県立医科大学 2012年 第2問
以下の各問いに答えよ.

(1)$e$は自然対数の底とし,$a$は正の実数とする.以下の問いに答えよ.

(i) $x>0$で定義された関数$f(x)=a \log x-x$の増減を調べ,極値を求めよ.
(ii) $\displaystyle \lim_{x \to \infty} x^a e^{-2x}=0$を示せ.
(iii) 極限値$\displaystyle \lim_{x \to \infty} \int_0^x t^2e^{-2t} \, dt$を求めよ.

(2)$0<t<\pi$とする.曲線$\displaystyle C:y=\sin \frac{x}{2} (0 \leqq x \leqq \pi)$上の点$\displaystyle \mathrm{P} \left( t,\ \sin \frac{t}{2} \right)$における$C$の接線を$\ell_1$,点$\mathrm{P}$と原点を通る直線を$\ell_2$とする.以下の問いに答えよ.

(i) 接線$\ell_1$と$x$軸との交点の$x$座標を$t$を用いて表せ.
(ii) $j=1,\ 2$について,直線$\ell_j$,$x$軸および直線$x=t$で囲まれた三角形を$x$軸のまわりに回転させてできた円錐の体積を$V_j$とする.また,曲線$C$,$x$軸および直線$x=t$で囲まれた図形を$x$軸のまわりに回転させてできた回転体の体積を$V$とする.$V_1$,$V_2$および$V$を$t$を用いて表せ.
(iii) 極限値$\displaystyle \lim_{\theta \to 0} \frac{\theta-\sin \theta}{\theta^3}$を求めよ.ただし,$\displaystyle \lim_{\theta \to 0} \frac{\sin \theta}{\theta}=1$は利用してよい.
福島県立医科大学 公立 福島県立医科大学 2012年 第3問
$n$は自然数とする.$3$次方程式$x^3-3x^2-27x-27=0$の$3$つの解$a,\ b,\ c$について,$p_n=a^n+b^n+c^n$とおく.以下の問いに答えよ.

(1)$a,\ b,\ c$は$3$つの異なる実数であることを示せ.
(2)$p_1,\ p_2,\ p_3$の値を求めよ.
(3)$p_{n+3}$を$p_n$,$p_{n+1}$および$p_{n+2}$を用いて表せ.
(4)$p_n$は$3^n$の倍数であることを示せ.
北九州市立大学 公立 北九州市立大学 2012年 第4問
行列$A=\left( \begin{array}{cc}
2 & 1 \\
3 & -2
\end{array} \right)$が表す$1$次変換を$f$とする.以下の問いに答えよ.

(1)行列$A$の逆行列$A^{-1}$を求めよ.
(2)点$\mathrm{P}(a,\ b)$が$1$次変換$f$によって移される点$\mathrm{P}^\prime$の座標を求めよ.
(3)直線$3x-y=2$が$1$次変換$f$によって移される直線を求めよ.
(4)$y=3x$に関する対称移動$g$は$1$次変換であることを示し,$g$を表す行列を求めよ.
京都府立大学 公立 京都府立大学 2012年 第1問
$a,\ b$を実数とする.関数$\displaystyle f(x)=\frac{a^x-b^x}{\sqrt{5}}$は$f(1)=1$,$f(2)=1$を満たすとする.以下の問いに答えよ.

(1)$a,\ b$の値を求めよ.
(2)$f(2)+f(3)=f(4)$が成り立つことを示せ.
(3)$x$が自然数のとき,$f(x)$も自然数となることを示せ.
福岡女子大学 公立 福岡女子大学 2012年 第1問
$a$を定数とし,$f(x)=x^5-5x^3+ax$とする.方程式$f(x)=0$は異なる$5$つの実数解をもち,これらを$x_1<x_2<x_3<x_4<x_5$とする.この$5$つの解は等差数列をなしており,その総和は$0$である.次の問に答えなさい.

(1)$x_3=0$を示せ.
(2)$a$の値を求めよ.
(3)$x_1,\ x_2,\ x_4,\ x_5$を求めよ.
福岡女子大学 公立 福岡女子大学 2012年 第2問
放物線$y=x^2$の$2$つの接線が直交しており,接点を$\mathrm{P}$,$\mathrm{Q}$としその$x$座標をそれぞれ$s,\ t$とする.次の問に答えなさい.

(1)$s$と$t$の関係式を求めなさい.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分は,接線のとり方に関係なく常に$y$軸上のある定点を通ることを示しなさい.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第4問
別々に製造される部品$\mathrm{A}$と部品$\mathrm{B}$を$1$個ずつ組み合わせて製造する製品がある.製品の不良は各部品の不良のみに由来し,部品$\mathrm{A}$に不良が生じる確率は$\displaystyle \frac{1}{9}$,部品$\mathrm{B}$に不良が生じる確率は$\displaystyle \frac{1}{4}$である.製品を製造した後,検査するまで各部品が不良であるかどうかは分からないとする.以下の問いに答えよ.

(1)合格品(不良が無い製品)が製造される確率を求めよ.
(2)製品を$5$個製造した後,検査を行ったとき,$4$個以上が合格品である確率を求めよ.
(3)この製品$1$個の販売価格は$1,200$円である.また,部品$\mathrm{A}$の$1$個あたりの製造費用は$300$円であり,部品$\mathrm{B}$の$1$個あたりの製造費用は$100$円である.製品$1$個あたりの利益は,以下の式で計算される.

(製品$1$個あたりの利益)$=$(販売価格)$-$(製品$1$個あたりの費用)

製品$1$個あたりの費用が部品$\mathrm{A}$と$\mathrm{B}$の製造費用のみと考えてよいとき,製品$1$個あたりの利益の期待値を求めよ.なお,不良品(不良のある製品)は販売しないため,上式の(販売価格)項が$0$となり負の利益(損失)が生じることを考慮せよ.
(4)新たに工作機械を導入することで,部品$\mathrm{B}$に不良が生じる確率を$\displaystyle \frac{1}{8}$にすることができる.しかし,この工作機械の導入費用として$500,000$円が必要であり,これに加えて部品$\mathrm{B}$の$1$個あたりの製造費用は$100$円増加する.$10,000$個製品を製造するとき,工作機械を導入する場合としない場合でどちらが有利か,工作機械を導入する場合の製品$1$個あたりの利益の期待値を示した上で判定せよ.ただし,工作機械の導入費用は$10,000$個の製品の製造でまかなうものとする.また,販売価格および部品$\mathrm{A}$の製造費用は(3)と同じとする.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。