タグ「証明」の検索結果

139ページ目:全1924問中1381問~1390問を表示)
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第4問
座標平面において,原点$\mathrm{O}$を中心とし半径が$1$の円$C$を考える.円$C$上に,点$\mathrm{P} \displaystyle \left( -\frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$,点$\mathrm{Q}(0,\ 1)$,点$\mathrm{R} \displaystyle \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$をとる.以下の問いに答えよ.

(1)$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る放物線の方程式を求めよ.
(2)(1)で求めた放物線と,線分$\mathrm{OP}$,線分$\mathrm{OR}$で囲まれた部分の面積を求めよ.
(3)(2)で求めた部分の面積は,点$\mathrm{Q}$が弧の上にある扇形$\mathrm{OPR}$の面積より小さい.このことを用いて,円周率$\pi$に対して$\pi > 3.13$が成り立つことを示せ.ただし,$\sqrt{3}<1.733$であることを用いてよい.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第7問
原点$\mathrm{O}$を中心とする半径$1$の円において扇形$\mathrm{OAB}$を考える.ただし,点$\mathrm{A}$は$(1,\ 0)$であり,点$\mathrm{B}$は第$1$象限にあるとする.扇形$\mathrm{OAB}$の中心角は,$x$ラジアン$\displaystyle \left( 0<x<\frac{\pi}{2} \right)$であるとする.点$\mathrm{B}$から$\mathrm{OA}$におろした垂線を$\mathrm{BC}$,点$\mathrm{A}$における円の接線が,点$\mathrm{O}$と点$\mathrm{B}$を通る直線と交わる点を$\mathrm{D}$とする.以下の問いに答えよ.

(1)三角形$\mathrm{ODA}$,三角形$\mathrm{OAB}$,扇形$\mathrm{OAB}$の面積を,$x$を用いてそれぞれ表せ.
(2)不等式$\displaystyle \cos x<\frac{\sin x}{x}<1$が成り立つことを示せ.
(3)$\displaystyle \lim_{x \to +0}\frac{\sin x}{x}=1$を示せ.ただし,$x \to +0$は,$x$が正の値をとりながら限りなく$0$に近づくことを表す.
会津大学 公立 会津大学 2012年 第6問
$a,\ b$を実数の定数として,$2$次の正方行列$A$を
\[ A=\left( \begin{array}{cc}
a & a-b \\
0 & b
\end{array} \right) \]
と定める.自然数$n$に対して$A^n$を推測し,それが正しいことを数学的帰納法を用いて証明せよ.
滋賀県立大学 公立 滋賀県立大学 2012年 第3問
直方体$\mathrm{OADB}$-$\mathrm{CEGF}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,直線$\mathrm{OG}$と平面$\mathrm{DEF}$の交点を$\mathrm{P}$とする.

(1)$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(3)$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=|\overrightarrow{c}|=1$としたとき,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{AP}}$は直交することを示せ.
滋賀県立大学 公立 滋賀県立大学 2012年 第4問
$a<-2$とする.関数$f(x)=e^x-e^{-x}+ax$を考える.

(1)$\displaystyle \lim_{x \to \infty}f(x)$と$\displaystyle \lim_{x \to -\infty}f(x)$を求めよ.ただし,$\displaystyle \lim_{x \to \infty}\frac{x}{e^x}=0$であることを用いてよい.
(2)$y=f(x)$のグラフは$x$軸と異なる$3$点で交わることを示せ.
兵庫県立大学 公立 兵庫県立大学 2012年 第1問
$f(x)=x^3-2x^2-x+1$とする.

(1)方程式$f(x)=0$は$-1<\alpha<0$,$0<\beta<1$,$1<\gamma$をみたす$3$個の実数解$\alpha,\ \beta,\ \gamma$をもつことを示せ.
(2)点$(0,\ 1)$における$y=f(x)$の接線を$\ell$とする.曲線$y=f(x)$と$\ell$とで囲まれた部分の面積を求めよ.
兵庫県立大学 公立 兵庫県立大学 2012年 第4問
曲線$\displaystyle C_1:y=\frac{e}{2}x^2+\frac{e}{2}$,$C_2:y=e^x$について,次の問いに答えよ.

(1)$C_1$と$C_2$がただ一つの共有点をもつことを示せ.
(2)$C_1,\ C_2$および$y$軸で囲まれた図形の面積を求めよ.
兵庫県立大学 公立 兵庫県立大学 2012年 第5問
$xy$平面上の$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ 0)$,$\mathrm{B}(0,\ b)$,および,$\mathrm{C}(a,\ b)$ \\
$(0<a<b)$を頂点とする長方形$\mathrm{OACB}$と,辺$\mathrm{OA}$上の定点 \\
$\mathrm{S}(s,\ 0) (0<s<a)$を考える.次の問に答えなさい.
\img{562_2720_2012_1}{25}


(1)辺$\mathrm{AC}$,$\mathrm{CB}$,$\mathrm{BO}$上に各々点$\mathrm{T}$,$\mathrm{U}$,$\mathrm{V}$を適切にとれば,四角形 \\
$\mathrm{STUV}$は長方形となる.このとき,$\mathrm{AT}=t$として,$t$が満たすべ \\
き条件を$a,\ b,\ s,\ t$を用いて表しなさい.また,定点$\mathrm{S}$に対して, \\
長方形$\mathrm{OACB}$に内接するこのような長方形$\mathrm{STUV}$は$2$つ存在することを示しなさい.
(2)(1)で考えた$2$つの内接する長方形の面積の和は長方形$\mathrm{OACB}$の面積に等しいことを証明しなさい.
名古屋市立大学 公立 名古屋市立大学 2012年 第2問
図のような縦横同数の格子の全ての格子点上に,白または黒の石を置く.縦または横に隣り合う石の色が同じならその間に実線を,異なっていれば点線を引き,実線の数を数える操作を行う.図$1$の実線の数は$2$本,図$2$では$5$本である.
(図は省略)

(1)$2 \times 2$の格子点に$4$つの石を置くとき,石の置き方にかかわらず,実線の数は偶数になることを示せ.
(2)$3 \times 3$の格子点に$9$つの石を置くとき,実線の数が奇数になるための必要十分条件を示せ.ただし,(1)の結果を使ってもよい.
名古屋市立大学 公立 名古屋市立大学 2012年 第1問
直線$\ell:y=-2x \log_2 a$と放物線$C:y=x^2+b^2$がある.ただし$a>0$とする.次の問いに答えよ.

(1)$b=\log_35$とする.$C$と$\ell$が接するとき,$a$の値を求め,$a<3$であることを示せ.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(2)$C$と$\ell$が異なる$2$点で交わるとき,$a,\ b$の満たす条件を求め,$ab$平面上に図示せよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。