タグ「証明」の検索結果

133ページ目:全1924問中1321問~1330問を表示)
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第3問
$n$を$3$以上の整数とする.$xyz$空間の平面$z=0$上に,$1$辺の長さが$4$の正$n$角形$P$があり,$P$の外接円の中心を$\mathrm{G}$とおく.半径$1$の球$B$の中心が$P$の辺に沿って$1$周するとき,$B$が通過してできる立体を$K_n$とする.このとき,次の問いに答えよ.

(1)$P$の隣り合う$2$つの頂点$\mathrm{P}_1$,$\mathrm{P}_2$をとる.$\mathrm{G}$から辺$\mathrm{P}_1 \mathrm{P}_2$に下ろした垂線と$\mathrm{P}_1 \mathrm{P}_2$との交点を$\mathrm{Q}$とするとき,$\mathrm{GQ}>1$となることを示せ.
(2)次の各問に答えよ.

(i) $K_n$を平面$z=t (-1 \leqq t \leqq 1)$で切ったときの断面積$S(t)$を$t$と$n$を用いて表せ.
(ii) $K_n$の体積$V(n)$を$n$を用いて表せ.

(3)$\mathrm{G}$を通り,平面$z=0$に垂直な直線を$\ell$とする.$K_n$を$\ell$のまわりに$1$回転させてできる立体の体積$W(n)$を$n$を用いて表せ.
(4)$\displaystyle\lim_{n \to \infty}\frac{V(n)}{W(n)}$を求めよ.
法政大学 私立 法政大学 2012年 第2問
$f(x)=x^2-5$として,数列$\{a_n\}$を次のように定義する.\\
\quad $a_1=3$,点$(a_n,\ f(a_n))$における曲線$y=f(x)$の接線が$x$軸と交わる点の$x$座標を$a_{n+1}$とする$(n=1,\ 2,\ 3,\ \cdots)$。\\
\quad 次の問いに答えよ.

(1)$a_{n+1}$を$a_n$で表せ.
(2)命題$P(n)$を$\lceil \sqrt{5} < a_{n+1} < a_n \rfloor$とするとき,すべての正の整数$n$に対して$P(n)$が成り立つことを数学的帰納法によって証明せよ.
(3)次の不等式が共に成り立つ1より小さい正の数$r$が存在することを示せ.

(4)$a_{n+1}-\sqrt{5} \leqq r(a_n-\sqrt{5}) \quad (n=1,\ 2,\ 3,\ \cdots)$
(5)$a_n -\sqrt{5} \leqq r^{n-1} \quad (n= 1,\ 2,\ 3,\ \cdots)$
稚内北星学園大学 私立 稚内北星学園大学 2012年 第1問
$x$の関数$\displaystyle f(x)=\frac{\log x}{x^2}$に対して,次の問いに答えよ.

(1)$f(x)$の導関数$f^{\, \prime}(x)$を求め,$f(x)$の極値を求めよ.
(2)$f(x)$の第2次導関数$f^{\, \prime\prime}(x)$を求め,さらに$f^{\, \prime\prime}(x)=0$を満たす$x$の値を求めよ.
(3)$x>0$において,$2\sqrt{x}-\log x > 0$を示せ.
(4)$\displaystyle \lim_{x \to \infty} \frac{\log x}{x^2}$を求めよ.
(5)$\displaystyle \lim_{a \to \infty} \int_1^a f(x)\, dx = \int_1^c f(x) \, dx$を満たす正の定数$c$を求めよ.
南山大学 私立 南山大学 2012年 第2問
座標空間に$3$つの点$\mathrm{A}(4,\ 5,\ 4)$,$\mathrm{B}(6,\ 2,\ 2)$,$\mathrm{C}(2,\ 1,\ 3)$がある.

(1)$3$つの内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$,$\overrightarrow{\mathrm{CA}} \cdot \overrightarrow{\mathrm{CB}}$を求めよ.
(2)$\triangle \mathrm{ABC}$は鋭角三角形,直角三角形,鈍角三角形のいずれになるか,(1)の結果を用いて示せ.
(3)点$\mathrm{P}(a,\ b,\ 0)$から,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$までの距離がそれぞれ$\sqrt{18}$,$\sqrt{17}$,$\sqrt{19}$であるとき,$a,\ b$の値を求めよ.
南山大学 私立 南山大学 2012年 第3問
$a$を実数として,関数$\displaystyle f(x)=a \cos x-\frac{\cos x}{1+\sin x} \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$を考える.

(1)$t=\sin x$とし,$f^\prime(x)$を$a$と$t$の式で表せ.
(2)$\displaystyle f^\prime \left( \frac{\pi}{6} \right)=0$となるように$a$の値を定めよ.そのとき,$f(x)$は$\displaystyle x=\frac{\pi}{6}$で極大となることを示し,極大値$\displaystyle f \left( \frac{\pi}{6} \right)$を求めよ.
(3)$a$の値を$(2)$のように定めるとき,曲線$y=f(x)$と$x$軸と$y$軸とで囲まれた部分の面積$S$を求めよ.
甲南大学 私立 甲南大学 2012年 第2問
$a$を正の実数とする.空間内の$3$点$\mathrm{A}(0,\ 1,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$を通る平面を$\alpha$とし,点$\mathrm{P}(0,\ 1-a,\ 0)$から平面$\alpha$に下ろした垂線の足を$\mathrm{H}$とする.このとき,以下の問いに答えよ.

(1)等式$\overrightarrow{\mathrm{PH}}=\overrightarrow{\mathrm{PA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$が成り立つように実数$s,\ t$の値を定めよ.
(2)線分$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,点$\mathrm{H}$は直線$\mathrm{AM}$上にあることを示せ.
(3)実数$a$が$0<a<3$の範囲を動くとき,四面体$\mathrm{BCHP}$の体積の最大値を求めよ.
甲南大学 私立 甲南大学 2012年 第2問
$a$を正の実数とする.空間内の$3$点$\mathrm{A}(0,\ 1,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$を通る平面を$\alpha$とし,点$\mathrm{P}(0,\ 1-a,\ 0)$から平面$\alpha$に下ろした垂線の足を$\mathrm{H}$とする.このとき,以下の問いに答えよ.

(1)等式$\overrightarrow{\mathrm{PH}}=\overrightarrow{\mathrm{PA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$が成り立つように実数$s,\ t$の値を定めよ.
(2)線分$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,点$\mathrm{H}$は直線$\mathrm{AM}$上にあることを示せ.
(3)実数$a$が$0<a<3$の範囲を動くとき,四面体$\mathrm{BCHP}$の体積の最大値を求めよ.
西南学院大学 私立 西南学院大学 2012年 第5問
原点を$\mathrm{O}$とする空間に四面体$\mathrm{OPQR}$がある.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の位置ベクトルをそれぞれ,$\overrightarrow{p}$,$\overrightarrow{q}$,$\overrightarrow{r}$とするとき,$\triangle \mathrm{PQR}$の重心$\mathrm{G}$の位置ベクトル$\overrightarrow{g}$は,$\displaystyle \overrightarrow{g}=\frac{1}{3}(\overrightarrow{p}+\overrightarrow{q}+\overrightarrow{r})$となることを示せ.
学習院大学 私立 学習院大学 2012年 第1問
正の実数$a,\ b,\ c$に対して,不等式
\[ \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geqq \frac{9}{a+b+c} \]
を証明せよ.また,等号が成り立つための条件を求めよ.
学習院大学 私立 学習院大学 2012年 第2問
関係式
\[ a_1=0,\quad \frac{1}{1-a_{n+1}}-\frac{1}{1-a_n}=2n+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定まる数列$\{a_n\}$に対して,次の問に答えよ.

(1)一般項$a_n$を求めよ.
(2)$k=1,\ 2,\ 3,\ \cdots$に対して
\[ b_k=\sqrt{\frac{k+1}{k}} (1-\sqrt{a_{k+1}}) \]
とおく.このとき,すべての$n$に対して,$\displaystyle \sum_{k=1}^n b_k<\sqrt{2}-1$が成り立つことを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。