タグ「証明」の検索結果

130ページ目:全1924問中1291問~1300問を表示)
電気通信大学 国立 電気通信大学 2012年 第3問
$a$を正の定数とし,次のように定められた$2$つの数列$\{a_n\},\ \{b_n\}$を考える.
\[ \left\{
\begin{array}{ll}
a_1=a,\quad a_{n+1}=\displaystyle\frac{1}{2} \left( a_n+\displaystyle\frac{4}{a_n} \right) & (n=1,\ 2,\ 3,\ \cdots) \\
b_n=\displaystyle\frac{a_n-2}{a_n+2} & (n=1,\ 2,\ 3,\ \cdots)
\end{array}
\right. \]
このとき,以下の問いに答えよ.

(1)$-1<b_1<1$であることを示せ.
(2)$b_{n+1}$を$a_n$を用いて表せ.さらに,$b_{n+1}$を$b_n$を用いて表せ.
(3)$b_3,\ b_4$をそれぞれ$b_1$を用いて表せ.さらに,数列$\{b_n\}$の一般項$b_n$を$n$と$b_1$を用いて表せ.
(4)数列$\{a_n\}$の一般項$a_n$を$n$と$b_1$を用いて表せ.
(5)極限値$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
宮城教育大学 国立 宮城教育大学 2012年 第4問
関数$f(x)=2 \sin x-x \cos x \ (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)$f(x)$の導関数を$f^\prime(x)$とするとき,$\displaystyle \frac{\pi}{2} \leqq a \leqq \pi$および$f^\prime(a)=0$を満たす$a$がただ1つ存在することを示せ.
(2)(1)の$a$を用いて,関数$y=f(x)$の増減,グラフの凹凸および変曲点を調べ,そのグラフの概形をかけ.
(3)(1)の$a$について,$0<t<a$とするとき,
\[ S(t)=\int_0^a |f(x)-f(t)| \, dx \]
が最小となるような$t$の値を$a$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2012年 第5問
関数$f(x)$は微分可能で,導関数$f^\prime(x)$は連続であるとする.$p(x)=xe^{2x}$とおくとき,$f(x)$は
\[ \int_0^x f(t) \cos (x-t) \, dt=p(x) \]
を満たしている.このとき次の問いに答えよ.

(1)$f(0)=p^\prime(0)$を示せ.
(2)$f^\prime(x)=p(x)+p^{\prime\prime}(x)$を示せ.
(3)$f(x)$を求めよ.
浜松医科大学 国立 浜松医科大学 2012年 第1問
関数$f(x)=1+\sin x+\sin^2 x \ (0 \leqq x \leqq 2\pi)$を考える.以下の問いに答えよ.

(1)$y=f(x)$の増減表を作成し,極値を求めよ.
(2)$\displaystyle x=\frac{5}{12}\pi$のとき,和$\sin x+\cos x$と積$\sin x \cos x$の値をそれぞれ求めよ.
(3)次の不等式$(ⅰ),\ (ⅱ)$がそれぞれ成り立つことを証明せよ.また,等号がいつ成立するか.それぞれ調べよ.

(i) $f(x) \geqq \sin x (1+\sqrt{2}+\cos x) \ (0 \leqq x \leqq \pi)$
(ii) $(\sin x+\cos x) \left( \displaystyle\frac{7}{4}-\sin x \cos x \right) \leqq \left( \displaystyle\frac{3}{2} \right)^{\frac{3}{2}} \ \left( 0 \leqq x \leqq \displaystyle\frac{\pi}{2} \right)$
東北大学 国立 東北大学 2012年 第6問
数列$\{a_n\}$を
\[ a_1=1,\quad a_{n+1}=\sqrt{\frac{3a_n+4}{2a_n+3}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.以下の問いに答えよ.

(1)$n \geqq 2$のとき,$a_n>1$となることを示せ.
(2)$\displaystyle \alpha^2=\frac{3 \alpha+4}{2 \alpha+3}$を満たす正の実数$\alpha$を求めよ.
(3)すべての自然数$n$に対して$a_n<\alpha$となることを示せ.
(4)$0<r<1$を満たすある実数$r$に対して,不等式
\[ \frac{\alpha-a_{n+1}}{\alpha-a_n} \leqq r \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つことを示せ.さらに,極限$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
金沢大学 国立 金沢大学 2012年 第2問
直線$\ell:(x,\ y,\ z)=(5,\ 0,\ 0)+s(1,\ -1,\ 0)$上に点$\mathrm{P}_0$,直線$m:(x,\ y,\ z)=(0,\ 0,\ 2)+t(1,\ 0,\ 2)$上に点$\mathrm{Q}_0$があり,$\overrightarrow{\mathrm{P}_0 \mathrm{Q}_0}$はベクトル$(1,\ -1,\ 0)$と$(1,\ 0,\ 2)$の両方に垂直である.次の問いに答えよ.

(1)$\mathrm{P}_0,\ \mathrm{Q}_0$の座標を求めよ.
(2)$|\overrightarrow{\mathrm{P}_0 \mathrm{Q}_0}|$を求めよ.
(3)直線$\ell$上の点$\mathrm{P}$,直線$m$上の点$\mathrm{Q}$について,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{\mathrm{PP_0}}$,$\overrightarrow{\mathrm{P_0Q_0}}$,$\overrightarrow{\mathrm{Q_0Q}}$で表せ.また,$|\overrightarrow{\mathrm{PQ}}|^2=|\overrightarrow{\mathrm{PP_0}}+\overrightarrow{\mathrm{Q_0Q}}|^2+16$であることを示せ.
福岡教育大学 国立 福岡教育大学 2012年 第3問
$a,\ b$を実数とし,
\[ S=\left( \begin{array}{cc}
a & 0 \\
0 & b
\end{array} \right),\quad O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right) \]
とする.$2$次正方行列$N$が$N^2=O,\ SN=NS$をみたすとき,次の問いに答えよ.

(1)$a=b$または$N=O$であることを示せ.
(2)$n$は$2$以上の自然数とする.このとき,
\[ (S+N)^n=S^n+nS^{n-1}N \]
が成り立つことを示せ.
(3)$n$は$2$以上の自然数とする.このとき,
\[ (S+SN+N)^n=S^n+nS^nN+nS^{n-1}N \]
が成り立つことを示せ.
(4)$N=\left( \begin{array}{cc}
0 & 1 \\
0 & 0
\end{array} \right)$のとき,$2$以上の自然数$n$に対して,$(S+SN+N)^n$を求めよ.
福岡教育大学 国立 福岡教育大学 2012年 第4問
次の問いに答えよ.

(1)無限級数
\[ 1+\frac{1}{1+e^x}+\frac{1}{(1+e^x)^2}+\cdots +\frac{1}{(1+e^x)^n}+\cdots \]
はすべての実数$x$について収束することを示し,その和を求めよ.ただし,$e$は自然対数の底とする.
(2)$(1)$で求めた無限級数の和を$f(x)$とする.方程式$\log f(x)=x$を解け.ただし,対数は自然対数とする.
金沢大学 国立 金沢大学 2012年 第3問
次の問いに答えよ.

(1)$f(t)$を$0 \leqq t \leqq 1$で連続な関数とする.$\tan x=t$とおいて,
\[ \int_0^{\frac{\pi}{4}} \frac{f(\tan x)}{\cos^2 x} \, dx=\int_0^1 f(t) \, dt \]
であることを示せ.
(2)(1)を用いて,$0$以上の整数$n$に対し,$\displaystyle \int_0^{\frac{\pi}{4}} \frac{\tan^n x}{\cos^2 x} \, dx$の値を求めよ.また,
\[ \int_0^{\frac{\pi}{4}} \tan^n x \, dx \leqq \frac{1}{n+1} \]
を示せ.
(3)$0$以上の整数$n$と$\displaystyle 0 \leqq x \leqq \frac{\pi}{4}$を満たす$x$に対し,
\[ \frac{1-\tan^2 x+\tan^4 x- \cdots +(-1)^n \tan^{2n} x}{\cos^2 x}=1-(-1)^{n+1} \tan^{2(n+1)} x \]
であることを示せ.
(4)(2)と(3)を用いて,$\displaystyle \lim_{n \to \infty}\sum_{k=0}^n (-1)^k \frac{1}{2k+1}$の値を求めよ.
愛媛大学 国立 愛媛大学 2012年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{2+\sqrt{3}+\sqrt{7}}$の分母を有理化せよ.
(2)方程式$4x^2-3x+k=0$の$2$つの解が$\sin \theta,\ \cos \theta$で与えられるとき,定数$k$の値を求めよ.
(3)関数$y=4^x-2^{x+2}+1$の$-1 \leqq x \leqq 3$における最大値と最小値を求めよ.
(4)直方体の各面にさいころのように$1$から$6$までの目が書かれている.この直方体を投げて,$1,\ 6$の目が出る確率はともに$p$であり,$2,\ 3,\ 4,\ 5$の目が出る確率はいずれも$q$である.この直方体を$1$回投げて,出た目の数を得点とする.このとき,得点の期待値は$p,\ q$の値によらずに一定であることを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。