タグ「証明」の検索結果

127ページ目:全1924問中1261問~1270問を表示)
福井大学 国立 福井大学 2012年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{K}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{b} \cdot \overrightarrow{c},\ \overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OK}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,平面$\alpha$上の点$\mathrm{P}$で$\mathrm{GP}+\mathrm{PC}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.また,点$\mathrm{P}_0$は$\triangle \mathrm{OAB}$の周または内部にあることを示せ.
長崎大学 国立 長崎大学 2012年 第2問
次の問いに答えよ.

(1)$m$を5以上の自然数とする.次の不等式が成り立つことを,数学的帰納法によって証明せよ.
\[ m!>2^m>m^2 \]
(2)自然数$n$に対する次の和を求めよ.
\[ S_n=\frac{1}{1 \cdot 3}+\frac{1}{2 \cdot 4}+\frac{1}{3 \cdot 5}+\cdots +\frac{1}{n(n+2)} \]
(3)(2)で求めた$S_n$について,$\displaystyle S_n<\frac{3}{4}$が成り立つことを示せ.
(4)(2)で求めた$S_n$について,$\displaystyle S_n>\frac{2}{3}$を満たす最小の自然数$n$を求めよ.
長崎大学 国立 長崎大学 2012年 第3問
3点$\mathrm{P}(4,\ -5)$,$\mathrm{Q}(0,\ 3)$,$\mathrm{R}(7,\ 4)$を通る円を$C$とする.次の問いに答えよ.

(1)円$C$の方程式を$x^2+y^2+ax+by+c=0$とおいて,$a,\ b,\ c$の値を求めよ.
(2)点$\mathrm{S}(-4,\ 0)$を通り,傾き$m$の直線を$\ell$とする.直線$\ell$が円$C$と2つの交点をもつような傾き$m$の範囲を求めよ.
(3)傾き$m$が(2)の範囲にあるとき,直線$\ell$と円$C$の2つの交点の中点の軌跡はある円の一部分であることを示し,その軌跡を求めよ.
長崎大学 国立 長崎大学 2012年 第1問
四面体$\mathrm{OABC}$において
\[ \mathrm{OA}=1, \mathrm{OB}=3, \mathrm{OC}=2, \angle \mathrm{AOB}=90^\circ, \angle \mathrm{AOC}=\angle \mathrm{BOC}=120^\circ \]
とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)平面$\mathrm{ABC}$上に点$\mathrm{H}$をとり,$s,\ t,\ u$を実数として$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$とおく.このとき,$s+t+u=1$となることを示せ.
(2)(1)の$\overrightarrow{\mathrm{OH}}$が平面$\mathrm{ABC}$に垂直であるとき,$s,\ t,\ u$の値をそれぞれ求めよ.
(3)平面$\mathrm{OAB}$上に点$\mathrm{K}$をとり,$\overrightarrow{\mathrm{CK}}$が平面$\mathrm{OAB}$に垂直であるとする.このとき,$\overrightarrow{\mathrm{OK}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表し,$\overrightarrow{\mathrm{CK}}$の大きさと四面体$\mathrm{OABC}$の体積を求めよ.
奈良教育大学 国立 奈良教育大学 2012年 第2問
三角形$\mathrm{ABC}$において,次の関係が成り立つとき,三角形$\mathrm{ABC}$は直角三角形,または,二等辺三角形であることを示せ.
\[ a \cos A=b \cos B \]
ただし,$a,\ b$はそれぞれ三角形$\mathrm{ABC}$の辺$\mathrm{BC}$,$\mathrm{AC}$の長さを表し,$A,\ B$はそれぞれ三角形$\mathrm{ABC}$の$\angle \mathrm{BAC},\ \angle \mathrm{ABC}$を表す.
山形大学 国立 山形大学 2012年 第2問
数列$\{a_n\}$が条件
\[ a_1=-\frac{1}{4},\quad a_{n+1}={a_n}^2-\frac{1}{4} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定められている.このとき,次の問に答えよ.

(1)不等式$\displaystyle -\frac{1}{4} \leqq a_n<0 \ (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを示せ.
(2)不等式$a_{2n-1}<a_{2n+1} \ (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを示せ.
(3)不等式$a_{2n}>a_{2n+2} \ (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを示せ.
(4)不等式
\[ 0<a_{2n}-a_{2n-1} \leqq \left( \frac{1}{2} \right)^{2(n+1)} \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つことを示せ.
山形大学 国立 山形大学 2012年 第3問
自然数$n$に対して
\[ S(x)=\sum_{k=1}^n (-1)^{k-1}x^{2k-2},\quad R(x)=\frac{(-1)^n x^{2n}}{1+x^2} \]
とする.さらに$\displaystyle f(x)=\frac{1}{1+x^2}$とする.このとき,次の問に答えよ.

(1)等式$\displaystyle \int_0^1 S(x) \, dx=\sum_{k=1}^n (-1)^{k-1}\frac{1}{2k-1}$が成り立つことを示せ.
(2)定積分$\displaystyle \int_0^1 f(x) \, dx$の値を求めよ.
(3)等式$S(x)=f(x)-R(x)$が成り立つことを示せ.
(4)不等式$\displaystyle |\int_0^1 R(x) \, dx| \leqq \frac{1}{2n+1}$が成り立つことを示せ.
(5)無限級数$\displaystyle 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$の和を求めよ.
山形大学 国立 山形大学 2012年 第4問
$2$次正方行列
\[ A=\left( \begin{array}{cc}
\displaystyle\frac{1+3 \sqrt{3}}{2} & -\sqrt{3} \\
\displaystyle\frac{5 \sqrt{3}}{2} & \displaystyle\frac{1-3 \sqrt{3}}{2}
\end{array} \right),\quad B=\left( \begin{array}{cc}
1 & 1 \\
2 & 1
\end{array} \right) \]
について,次の問に答えよ.

(1)$A,\ B$は逆行列をもつことを示し,$A^{-1},\ B^{-1}$を求めよ.
(2)$B^{-1}A^{-1}B,\ (B^{-1}A^{-1}B)^3$を求めよ.
(3)$A^7BX=B$をみたす$2$次正方行列$X$を求めよ.
(4)$(3)$の行列$X$について
\[ E+X^5+X^{10}+X^{15}+X^{20}+X^{25}=O \]
が成り立つことを示せ.ただし$E$は$2$次の単位行列,$O$は零行列とする.
茨城大学 国立 茨城大学 2012年 第1問
数列$\{a_n\}$を$\displaystyle a_n=\frac{1}{\sqrt{5}} \left\{ \left( \frac{3+\sqrt{5}}{2} \right)^{n-1}-\left( \frac{3-\sqrt{5}}{2} \right)^{n-1} \right\} \ (n=1,\ 2,\ 3,\ \cdots)$と定義する.次の各問に答えよ.

(1)$a_1,\ a_2,\ a_3,\ a_4$を求めよ.
(2)すべての自然数$n$に対して,次の漸化式が成り立つように実数$p,\ q$を定めよ.
\[ a_{n+2}=pa_{n+1}+qa_n \]
(3)$a_n$が奇数なら$a_{n+3}$も奇数となり,$a_n$が偶数なら$a_{n+3}$も偶数となることを示せ.
茨城大学 国立 茨城大学 2012年 第2問
以下の各問に答えよ.

(1)$2x^2y+5xy^2-6x^2+2y^3-6y^2-15xy$を因数分解せよ.
(2)$p,\ q$を実数の定数とする.3次方程式$x^3+px^2+qx+6=0$の1つの解が$\displaystyle x=\frac{2}{1-i}$であるとき,$p,\ q$の値と他の解を求めよ.ただし,$i$は虚数単位である.
(3)実数$a,\ b$に関する命題「$a+b<0$ならば,$a<0$または$b<0$」を命題$\mathrm{P}$とする.

(i) 命題$\mathrm{P}$の真偽を答えよ.また,真ならば証明し,偽ならば反例をあげよ.
(ii) 命題$\mathrm{P}$の逆を命題$\mathrm{Q}$とする.命題$\mathrm{Q}$の真偽を答えよ.また,真ならば証明し,偽ならば反例をあげよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。