タグ「証明」の検索結果

126ページ目:全1924問中1251問~1260問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2012年 第2問
$a,\ b$を実数とし,$a<b$とする.関数$f(x)$は閉区間$[a,\ b]$で連続,開区間$(a,\ b)$で少なくとも2回まで微分可能で,$f^{\prime\prime}(x) \geqq 0$とする.以下の問いに答えよ.

(1)$a<c<b$とする.$y=g(x)$を点$(c,\ f(c))$における$f(x)$の接線とする.$a \leqq x \leqq b$のとき$g(x) \leqq f(x)$を示せ.
(2)$y=h(x)$を,$(a,\ f(a))$,$(b,\ f(b))$の2点を通る直線とする.$a \leqq x \leqq b$のとき$f(x) \leqq h(x)$を示せ.
(3)$a<c<b$とする.
\[ \frac{1}{2}(b-a) \left( f^\prime(c)(a+b-2c)+2f(c) \right) \leqq \int_a^b f(x) \, dx \leqq \frac{1}{2}(f(a)+f(b))(b-a) \]
を示せ.
(4)\[ \frac{\pi}{2}e^{-\frac{1}{\sqrt{2}}} \leqq \int_0^{\frac{\pi}{2}} e^{-\cos x} \, dx \leqq \frac{\pi}{4} \left( 1+\frac{1}{e} \right) \]
を示せ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第4問
以下では,実数を成分にもつ行列を考える.

(1)$A=\left( \begin{array}{cc}
a & b \\
0 & d
\end{array} \right)$とする.

(i) $a>0,\ d \geqq 0$または$a \geqq 0,\ d>0$のとき,$X^2=A$を満たす行列$X$を1つ求めよ.
(ii) $a<0$または$d<0$のとき,$X^2=A$を満たす行列$X$が存在するための必要十分条件を$a,\ b,\ d$を用いて表せ.また,この条件が成り立つとき,$X^2=A$を満たす行列$X$を1つ求めよ.
(iii) $a=d=0,\ b \neq 0$のとき,$X^2=A$を満たす行列$X$は存在しないことを示せ.

(2)$B=\left( \begin{array}{cc}
p & q \\
r & s
\end{array} \right),\ B^2=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$とする.

(i) $p+s=0,\ ps-qr=0$となることを示せ.
(ii) $B \neq \left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$のとき,$X^2=B$を満たす行列$X$は存在しないことを示せ.
宇都宮大学 国立 宇都宮大学 2012年 第6問
関数$y=e^{-x}$のグラフを$C$とする.$C$上の点P$(t,\ e^{-t})$における接線と$x$軸との交点をQ$(u,\ 0)$とする.$C$上の点$(u,\ e^{-u})$をRとするとき,次の問いに答えよ.

(1)$u$を$t$の式で表せ.
(2)線分PQ,線分QRと$C$で囲まれた部分を図形Aとする.図形Aを$x$軸のまわりに1回転してできる立体の体積$V$を$t$の式で表せ.
(3)(1)の$u$を$t$の関数とみて$u(t)$と表す.数列$\{t_n\}$を$t_1=0,\ t_{n+1}=u(t_n) \ (n=1,\ 2,\ \cdots)$と定義するとき,一般項$t_n$を求めよ.
(4)(2)の$V$を$t$の関数とみて$V(t)$と表し,(3)の$t_n$を用いて$V_n=V(t_n) \ (n=1,\ 2,\ \cdots)$とおく.数列$\{V_n\}$は等比数列であることを示し,無限等比級数
\[ V_1+V_2+\cdots +V_n+\cdots \]
の収束,発散を調べ,収束する場合は,その和を求めよ.
旭川医科大学 国立 旭川医科大学 2012年 第1問
正の奇数$p$に対して,$3$つの自然数の組$(x,\ y,\ z)$で,$x^2+4yz=p$を満たすもの全体の集合を$S$とおく.すなわち,
\[ S=\left\{ (x,\ y,\ z) \;\Big|\; x,\ y,\ z \text{は自然数,} x^2+4yz=p \right\} \]
次の問いに答えよ.

(1)$S$が空集合でないための必要十分条件は,$p=4k+1 \ (k \text{は自然数})$と書けることであることを示せ.
(2)$S$の要素の個数が奇数ならば$S$の要素$(x,\ y,\ z)$で$y=z$となるものが存在することを示せ.
小樽商科大学 国立 小樽商科大学 2012年 第4問
$-1<x<1$を定義域とする関数$\displaystyle f_p(x)=\frac{x-p}{1-px}$,$\displaystyle f_q(x)=\frac{x-q}{1-qx}$ \ $(-1<p<1,\ -1<q<1)$について,次の問いに答えよ.

(1)定義域内のすべての$x$に対して,$-1<f_q(x)<1$を示せ.
(2)定義域内のすべての$x$に対して,$\displaystyle f_p(f_q(x))=\frac{x-r}{1-rx}$を満たすとき,$r$を$p$と$q$を用いて表し,$-1<r<1$を示せ.ただし,$f_p(f_q(x))$は$\displaystyle f_p(y)=\frac{y-p}{1-py}$に$y=f_q(x)$を代入したものを意味するものとする.
(3)定義域内のすべての$x$に対して,$f_p(f_q(x))=f_q(x)$を満たす$p$を求めよ.
旭川医科大学 国立 旭川医科大学 2012年 第2問
$C_1$を中心$(0,\ 0)$,半径$1$の円とし,$C_2$を中心$(0,\ 0)$,半径$r>1$の円とする.$ad-bc>0$を満たす行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$で表される$1$次変換により円$C_1$が円$C_2$に移るとする.次の問いに答えよ.

(1)$a^2+c^2=b^2+d^2=r^2,\ ab+cd=0$が成り立つことを示せ.
(2)$a=r \cos \theta,\ c=r \sin \theta \ (\theta \text{は実数})$とおくとき,$b,\ d$を$r,\ \theta$を用いて表せ.
(3)$B=\displaystyle\frac{1}{r} \left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$とする.また,$C_1$に外接し,$C_2$に内接する$8$個の相異なる円$S_1,\ S_2,\ \cdots,\ S_8$が次の$3$条件$(ⅰ),\ (ⅱ),\ (ⅲ)$を満たしているとする.このとき,$r$を求めよ.

(i) 行列$B$で表される$1$次変換により$S_i \ (i=1,\ 2,\ \cdots,\ 7)$は$S_{i+1}$に,$S_8$は$S_1$に移る.
(ii) $S_{i+1} \ (i=1,\ 2,\ \cdots,\ 7)$は$S_i$に外接し,$S_8$は$S_1$にも外接する.
(iii) $S_1$は$S_3,\ S_4,\ \cdots, S_7$と交わらない.
長岡技術科学大学 国立 長岡技術科学大学 2012年 第1問
行列$A=\left( \begin{array}{cc}
1 & 1 \\
0 & 2
\end{array} \right)$について,以下の問いに答えなさい.

(1)$A^2$と$A^3$を求めなさい.
(2)自然数$n$に対して$A^n$を推測し,それを数学的帰納法により証明しなさい.
愛知教育大学 国立 愛知教育大学 2012年 第1問
次の問いに答えよ.

(1)円$C:x^2+y^2=5^2$上の点$\mathrm{P}(s,\ t) (t \neq 0)$における接線の方程式が
\[ y=-\frac{s}{t}x+\frac{5^2}{t} \]
となることを示せ.
(2)円$C$の接線のうち,傾きが$7$となるものを求めよ.
旭川医科大学 国立 旭川医科大学 2012年 第4問
曲線$C:y=\log x$上に異なる$2$点$\mathrm{A}(a,\ \log a)$,$\mathrm{B}(b,\ \log b)$をとり,$C$の$\mathrm{A}$における接線と$\mathrm{B}$における接線の交点について考える.次の問いに答えよ.

(1)任意に与えられた$a>1$に対して,$2$本の接線の交点がちょうど直線$x=1$上にくるような$b$が唯一つだけ存在し,$b<1$であることを示せ.
(2)$2$点$\mathrm{A}(a,\ \log a)$,$\mathrm{B}\displaystyle \left( \frac{1}{a},\ \log \frac{1}{a} \right) \ (a>1)$について,$2$本の接線の交点の$x$座標が$1$より大きいか小さいかを調べよ.
(3)$k$を自然数とする.$\displaystyle a=1+\frac{1}{k}$として(2)の結果を使って,次の不等式が成り立つことを示せ.
\[ \sum_{k=1}^n \frac{1}{k} > \frac{1}{2} \left( 1+\frac{1}{n} \right) +\log n \quad (n \geqq 2) \]
福井大学 国立 福井大学 2012年 第1問
$n$を自然数とするとき,以下の問いに答えよ.

(1)二項定理を用いて,$\displaystyle \sum_{k=0}^n \comb{n}{k}=\comb{n}{0}+\comb{n}{1}+\cdots +\comb{n}{n-1}+\comb{n}{n}$の値が$2^n$に等しいことを示せ.
(2)複素数$z$が$z^2-2z+2=0$をみたすとき,$z$および$z^{4n}$の値を求めよ.
(3)$\displaystyle \sum_{k=0}^{2n}(-1)^k \cdot \comb{4n}{2k}=\comb{4n}{0}-\comb{4n}{2}+\cdots -\comb{4n}{4n-2}+\comb{4n}{4n}$の値が$(-4)^n$に等しいことを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。