タグ「証明」の検索結果

125ページ目:全1924問中1241問~1250問を表示)
三重大学 国立 三重大学 2012年 第4問
以下の問いに答えよ.

(1)関数$y=x-e^{-x}$の増減を調べよ.
(2)実数$\alpha$で$\alpha-e^{-\alpha}=0$を満たすものがひとつだけ存在することを示せ.さらに,この$\alpha$は,$0<\alpha<1$を満たすことを示せ.
(3)(2)の$\alpha$と正の整数$n$に対して,
\[ I_n=\int_0^\alpha (xe^{-nx}+\alpha x^{n-1}) \, dx \]
とおく.$I_n$を$\alpha$の多項式として表せ.また,$\displaystyle \lim_{n \to \infty}n^2 I_n$を求めよ.
三重大学 国立 三重大学 2012年 第1問
実数$x$に対し,$[\,x\,]$を$x$以下の最大の整数とする.すなわち,$[\,x\,]$は整数であり$[\,x\,] \leqq x < [\,x\,]+1$を満たすとする.たとえば,$\displaystyle [\,2\,]=2,\ \left[ \frac{5}{3} \right]=1$である.このとき,以下の問いに答えよ.

(1)すべての実数$a$とすべての整数$m$に対し,$[\,a+m\,]=[\,a\,]+m$が成り立つことを示せ.
(2)数列$\{a_k\}$を$\displaystyle a_k=\left[ \frac{2k}{3} \right] \ (k=1,\ 2,\ \cdots)$と定める.自然数$n$に対して,$\displaystyle \sum_{k=1}^{n}a_k$を求めよ.
三重大学 国立 三重大学 2012年 第4問
以下の問いに答えよ.

(1)関数$y=|\,x\,|-e^{-x}$の増減を調べよ.
(2)実数$\alpha$で$|\,\alpha\,|-e^{-\alpha}=0$を満たすものがひとつだけ存在することを示せ.さらに,この$\alpha$は,$0<\alpha<1$を満たすことを示せ.
(3)(2)の$\alpha$と正の整数$n$に対して,
\[ I_n=\int_0^\alpha (xe^{-nx}+\alpha x^{n-1}) \, dx \]
とおく.$I_n$を$\alpha$の多項式として表せ.また,$\displaystyle \lim_{n \to \infty}n^2 I_n$を求めよ.
和歌山大学 国立 和歌山大学 2012年 第5問
行列$A=\left( \begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 4
\end{array} \right),\ B=\left(\!\! \begin{array}{rr}
1 & -1 \\
1 & 1 \\
-1 & 0
\end{array} \right)$について,次の問いに答えよ.

(1)$AB$および$ABA$を求めよ.
(2)自然数$n$に対して,$(AB)^nA$を推測し,それが正しいことを数学的帰納法で証明せよ.
(3)自然数$n$に対して,$(BA)^{n+1}$を求めよ.
香川大学 国立 香川大学 2012年 第4問
$n$を2以上の整数とする.集合$X_n=\{ 1,\ 2,\ \cdots,\ n \}$を2つの空集合ではない部分集合$A_n,\ B_n$に分ける.すなわち,$A_n \cup B_n=X_n,\ A_n \cap B_n = \phi,\ A_n \neq \phi,\ B_n \neq \phi$である.$A_n$に属する自然数の和を$a_n$,$B_n$に属する自然数の和を$b_n$とおく.例えば,$n=5$のとき,$X_5$を$A_5=\{ 1,\ 2,\ 5 \},\ B_5=\{ 3,\ 4 \}$と分ければ,$a_5=8,\ b_5=7$となる.このとき,次の問に答えよ.

(1)$n$が4の倍数のとき,$a_n=b_n$となるように$X_n$を分けられることを示せ.
(2)$n+1$が4の倍数のときも,$a_n=b_n$となるように$X_n$を分けられることを示せ.
(3)$n$も$n+1$も4の倍数ではないとき,$a_n=b_n$となるようには$X_n$を分けられないことを示せ.
徳島大学 国立 徳島大学 2012年 第3問
2次の正方行列$A$で表される1次変換を$f$とする.Oを原点とする座標平面上に,異なる2点P$(x_1,\ y_1)$,Q$(x_2,\ y_2)$があって,次の2つの条件を満たす.

条件1:1次変換$f$により,点Pは点$(-2x_2,\ -2y_2)$に移る.
条件2:合成変換$f \circ f$により,点Qは点$(4x_1,\ 4y_1)$に移る.


(1)行列$A^3$で表される1次変換により,点Pは点$(-8x_1,\ -8y_1)$に,点Qは点$(-8x_2,\ -8y_2)$に移ることを示せ.
(2)3点O,P,Qは同一直線上にないことを示し,$x_1y_2-x_2y_1 \neq 0$を示せ.
(3)$A^3=-8E$を示せ.ただし,$E$は2次の単位行列である.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第1問
半径2の円板が$x$軸上を正の方向に滑らずに回転するとき,円板上の点Pの描く曲線$C$を考える.円板の中心の最初の位置を$(0,\ 2)$,点Pの最初の位置を$(0,\ 1)$とする.

(1)円板がその中心のまわりに回転した角を$\theta$とするとき,Pの座標は
\[ (2\theta-\sin \theta,\ 2-\cos \theta) \]
で与えられることを示せ.
(2)点P$(2\theta-\sin \theta,\ 2-\cos \theta) \ (0<\theta<2\pi)$における曲線$C$の法線と$x$軸との交点をQとする.線分PQの長さが最大となるような点Pを求めよ.ここで,Pにおいて接線に直交する直線を法線という.
(3)曲線$C$と$x$軸,2直線$x=0,\ x=4\pi$で囲まれた図形を$x$軸のまわりに回転してできる立体の体積を求めよ.
島根大学 国立 島根大学 2012年 第2問
$a$を実数とする.次の問いに答えよ.

(1)放物線$y=x^2-x+3a$と直線$y=3ax+2$は異なる$2$つの交点をもつことを示せ.
(2)$(1)$の放物線と直線の$2$つの交点をむすぶ線分の中点を$\mathrm{M}$とする.$a$が実数全体を動くとき,$\mathrm{M}$の$y$座標の最小値を求めよ.
(3)$(1)$の放物線と直線の$2$つの交点の$x$座標を$\alpha$と$\beta$とする.$a$が実数全体を動くとき,$|\alpha|+|\beta|$の最小値を求めよ.
島根大学 国立 島根大学 2012年 第3問
関数
\[ f(x)=\left( x+\frac{1}{2} \right) \log \left( 1+\frac{1}{x} \right) \quad (x>0) \]
について,次の問いに答えよ.

(1)$f^{\prime\prime}(x)$を求めよ.
(2)極限$\displaystyle \lim_{x \to \infty}f^{\prime}(x)$の値を求め,さらに$f^\prime(x)<0$であることを証明せよ.
(3)関数$y=f(x)$の凹凸と漸近線を調べ,そのグラフの概形をかけ.
東京学芸大学 国立 東京学芸大学 2012年 第1問
$3$次方程式$x^3+ax^2+bx+c=0$の$3$つの解を$\alpha,\ \beta,\ \gamma$とする.下の問いに答えよ.

(1)$\alpha+\beta+\gamma=-a,\ \alpha\beta+\beta\gamma+\gamma\alpha=b,\ \alpha\beta\gamma=-c$が成り立つことを示せ.
(2)$\alpha+\beta+\gamma=1,\ \alpha^2+\beta^2+\gamma^2=3,\ \alpha^3+\beta^3+\gamma^3=7$のとき,$\alpha^4+\beta^4+\gamma^4$の値を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。