タグ「証明」の検索結果

122ページ目:全1924問中1211問~1220問を表示)
岩手大学 国立 岩手大学 2012年 第1問
座標平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}_1(\sqrt{3},\ 1)$,$\mathrm{P}_2(\sqrt{3},\ 0)$をとる.点$\mathrm{P}_2$から線分$\mathrm{OP}_1$に引いた垂線と線分$\mathrm{OP}_1$との交点を$\mathrm{P}_3$とする.次に,点$\mathrm{P}_3$から線分$\mathrm{OP}_2$に引いた垂線と線分$\mathrm{OP}_2$との交点を$\mathrm{P}_4$とする.この操作を繰り返すことにより,点$\mathrm{P}_n$を定める.すなわち,点$\mathrm{P}_{n-1}$から$\mathrm{OP}_{n-2}$に引いた垂線と線分$\mathrm{OP}_{n-2}$との交点を$\mathrm{P}_n$とする.このとき,以下の問いに答えよ.

(1)三つの線分$\mathrm{P}_1 \mathrm{P}_2$,$\mathrm{P}_2 \mathrm{P}_3$,$\mathrm{P}_3 \mathrm{P}_4$の長さをそれぞれ求めよ.
(2)線分$\mathrm{P}_n \mathrm{P}_{n+1}$の長さを$n$を用いて表せ.
(3)三つの三角形$\mathrm{OP}_1 \mathrm{P}_2$,$\mathrm{OP}_2 \mathrm{P}_3$,$\mathrm{OP}_3 \mathrm{P}_4$の面積をそれぞれ求めよ.
(4)三角形$\mathrm{OP}_n \mathrm{P}_{n+1}$の面積を$n$を用いて表せ.
(5)三角形$\mathrm{OP}_n \mathrm{P}_{n+1}$の面積を$a_n$とおき,
\[ S_n=a_1+a_2+\cdots +a_n \]
と定義する.$S_n$は$2\sqrt{3}$以上にならないことを証明せよ.
岩手大学 国立 岩手大学 2012年 第3問
単位時間あたり一定量の水の出るポンプを使ってプールに水を入れることを考える.以下の問いに答えよ.

(1)プールに水をいっぱい入れるのに,ポンプIを使うと2時間,ポンプIIを使うと3時間かかるとする.IとIIを同時に使うと何時間かかるか.
(2)プールに水をいっぱい入れるのに,ポンプAを使うと$a$時間,ポンプBを使うと$b$時間かかるとする.AとBを同時に使うと何時間かかるか.
(3)プールに水をいっぱい入れるのに,ポンプC$_1$,ポンプC$_2$いずれを使っても$c$時間かかるとする.C$_1$とC$_2$を同時に使うと,(2)で求めた時間と同じ時間がかかったという.$c$を$a$と$b$を用いて表せ.
(4)$c$を(3)で求めた$a,\ b$の式とするとき,不等式$\displaystyle \frac{a+b}{2} \geqq c$が成り立つことを証明せよ.また,等号が成り立つのは$a=b$の場合に限ることを示せ.
福岡教育大学 国立 福岡教育大学 2012年 第1問
次の問いに答えよ.

(1)$a$を$0$でない実数とする.$x$についての$3$次方程式$x^3-a^3=0$の$2$つの虚数解を$\alpha,\ \beta$とするとき,$\displaystyle \frac{\alpha-\beta}{\alpha+\beta}$の値を求めよ.
(2)定積分$\displaystyle \int_{-\frac{3\pi}{2}}^{\frac{\pi}{2}} \sin |2x| \, dx$を求めよ.
(3)連続する$3$つの自然数$a,\ b,\ c$があり,それらは$a^2+b^2=c^2,\ a<b<c$をみたすとする.このような$a,\ b,\ c$はただ$1$組しかないことを示せ.
新潟大学 国立 新潟大学 2012年 第2問
次の問いに答えよ.

(1)$\log_{10}3$は無理数であることを示せ.
(2)$\displaystyle \frac{6}{13} < \log_{10}3 < \frac{1}{2}$が成り立つことを示せ.
(3)$3^{26}$の桁数を求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第1問
次の各問いに答えよ.

(1)$\mathrm{KADAI}$という語の$5$文字を並べて得られる順列のうち,$2$つの$\mathrm{A}$が隣り合わないものの総数を求めよ.
(2)$x^2-9x+14>0$を満たさない整数$x$で,$3$の倍数でないものをすべて求めよ.
(3)三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$の中点を$\mathrm{D}$,辺$\mathrm{AC}$の中点を$\mathrm{E}$とする.$\mathrm{BE}=\mathrm{CD}$ならば$\mathrm{AB}=\mathrm{AC}$であることを示せ.
新潟大学 国立 新潟大学 2012年 第2問
次の問いに答えよ.

(1)$k,\ n$は不等式$k \leqq n$を満たす自然数とする.このとき,
\[ 2^{k-1}n(n-1)(n-2) \cdots (n-k+1) \leqq n^k k! \]
が成り立つことを示せ.
(2)自然数$n$に対して,$\displaystyle \left( 1+\frac{1}{n} \right)^n<3$が成り立つことを示せ.
(3)$\displaystyle \frac{9}{19} < \log_{10}3 < \frac{1}{2}$が成り立つことを示せ.
新潟大学 国立 新潟大学 2012年 第5問
次の問いに答えよ.

(1)実数$x \geqq 0$に対して,次の不等式が成り立つことを示せ.
\[ x-\frac{1}{2}x^2 \leqq \log (1+x) \leqq x \]
(2)数列$\{a_n\}$を
\[ a_n=n^2 \int_0^{\frac{1}{n}} \log (1+x) \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定めるとき,$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
(3)数列$\{b_n\}$を
\[ b_n=\sum_{k=1}^n \log \left( 1+\frac{k}{n^2} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定めるとき,$\displaystyle \lim_{n \to \infty}b_n$を求めよ.
秋田大学 国立 秋田大学 2012年 第2問
平面上のベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$が,$|\overrightarrow{\mathrm{OA}}|=3,\ |\overrightarrow{\mathrm{OB}}|=6,\ |\overrightarrow{\mathrm{OC}}|=2$と
\[ \overrightarrow{\mathrm{OB}}=\frac{4}{3}\overrightarrow{\mathrm{OA}}+\frac{3}{2}\overrightarrow{\mathrm{OC}} \]
を満たす.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)ABを$2:1$に内分する点をPとするとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$で表せ.
(3)$|\overrightarrow{\mathrm{OP}}|$を求めよ.
(4)点Qが
\[ \overrightarrow{\mathrm{OQ}}=\frac{5}{6}\overrightarrow{\mathrm{OA}}+\frac{17}{16}\overrightarrow{\mathrm{OC}} \]
を満たすとき,Qが四角形OABCの内部にあることを示せ.
香川大学 国立 香川大学 2012年 第2問
$C_1$を,中心が$(1,\ 1)$,半径が1の円とする.円$C_2,\ C_3,\ C_4,\ \cdots$を次のように定める.

円$C_n$は,$x$軸,$y$軸および円$C_{n-1}$に接し,円$C_n$の半径$r_n$は,円$C_{n-1}$の半径$r_{n-1}$よりも小さいものとする.

このとき,次の問に答えよ.

(1)Oを原点とし,$n=2,\ 3,\ 4,\ \cdots$に対してP$_n$を$C_n$と$C_{n-1}$の接点とするとき,OP$_n$の長さを$r_n$で表せ.
(2)$r_n$と$r_{n-1}$の関係式を求め,数列$\{r_n\}$が等比数列であることを示せ.
(3)円$C_6$は,原点を中心とした半径$\displaystyle \frac{1}{1000}$の円の内部に含まれることを示せ.
香川大学 国立 香川大学 2012年 第4問
定数$a>0$に対して,$f(x)=ax^3-6ax^2+9ax+1$とする.このとき,次の問に答えよ.

(1)関数$y=f(x)$の極値を調べて,そのグラフをかけ.
(2)点A,B,Cの座標をそれぞれ$(-1,\ f(-1))$,$(4,\ f(t))$,$(t,\ f(t))$とする.$-1<t<3$のとき,点Cにおける曲線$y=f(x)$の接線と,線分ABとが平行になるような$t$が1つだけ存在することを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。