タグ「証明」の検索結果

119ページ目:全1924問中1181問~1190問を表示)
高知大学 国立 高知大学 2012年 第1問
次の問いに答えよ.

(1)不等式$x^2+y^2<1$の表す領域を$xy$平面上に図示せよ.
(2)不等式$|x|+|y|<2$の表す領域を$xy$平面上に図示せよ.
(3)実数$x,\ y$が$x^2+y^2<5$をみたすとき,$|x|<3$かつ$|y|<3$が成り立つことを示せ.
(4)任意の実数$x,\ y$に対して,$|x|+|y| \leqq 2\sqrt{x^2+y^2}$が成り立つことを示せ.
千葉大学 国立 千葉大学 2012年 第12問
$\ell,\ n,\ d$を自然数とする.このとき自然数の積$(2\ell +1)nd$は,ある自然数$a$と$2$以上の整数$m$を用いて
\[ (2 \ell+1)nd=\sum_{i=1}^m \{a+(i-1)d \} \]
と表せることを証明せよ.
弘前大学 国立 弘前大学 2012年 第3問
座標平面に点$\mathrm{E}(1,\ 0)$,$\mathrm{F}(1,\ 1)$,$\mathrm{F}^\prime(-5,\ 11)$がある.さらに点$\mathrm{E}^\prime$は第1象限にあり,$\mathrm{O}$を原点とするとき,三角形$\mathrm{OE}^\prime \mathrm{F}^\prime$は角$\mathrm{E}^\prime$が直角の二等辺三角形である.

(1)点$\mathrm{E}^\prime$の座標を求めよ.
(2)点$\mathrm{E}$を点$\mathrm{E}^\prime$に,点$\mathrm{F}$を点$\mathrm{F}^\prime$に移すような1次変換を$f$とする.$f$を表す行列を求めよ.
(3)座標平面に三角形$\mathrm{OPQ}$があり,(2)の1次変換$f$により点$\mathrm{P}$が点$\mathrm{P}^\prime$に,点$\mathrm{Q}$が点$\mathrm{Q}^\prime$に移るとする.三角形$\mathrm{OPQ}$と三角形$\mathrm{OP}^\prime \mathrm{Q}^\prime$は相似であることを示せ.
東京医科歯科大学 国立 東京医科歯科大学 2012年 第3問
関数$f(x)=x^3-x^2+x$について,以下の各問いに答えよ.

(1)$f(x)$はつねに増加する関数であることを示せ.
(2)$f(x)$の逆関数を$g(x)$とおく.$x>0$について
\[ \sqrt[3]{x}-1 < g(x) < \sqrt[3]{x}+1 \]
が成立することを示せ.
(3)$b>a>0$について
\[ 0<\int_a^b \frac{1}{x^2+1}\, dx<\frac{1}{a} \]
が成立することを示せ.
(4)自然数$n$について,(2)で定義された$g(x)$を用いて
\[ A_n=\int_n^{2n} \frac{1}{\{g(x)\}^3+g(x)} \, dx \]
とおくとき,極限値$\displaystyle \lim_{n \to \infty} A_n$を求めよ.
奈良女子大学 国立 奈良女子大学 2012年 第3問
$a$と$b$は異なる整数で,ともに$0$以上$9$以下とする.有理数$x$が次のように循環小数で表されているとする.
\[ x=0.abababab \cdots \]
次の問いに答えよ.

(1)$99x$は自然数であることを示せ.
(2)$33x$が自然数となるような$x$を$1$つ求めよ.
(3)$11x$が自然数となるときの$a+b$の値を求めよ.
高知大学 国立 高知大学 2012年 第1問
次の問いに答えよ.

(1)不等式$x^2+y^2<1$の表す領域を$xy$平面上に図示せよ.
(2)不等式$|x|+|y|<2$の表す領域を$xy$平面上に図示せよ.
(3)実数$x,\ y$が$x^2+y^2<5$をみたすとき,$|x|<3$かつ$|y|<3$が成り立つことを示せ.
(4)任意の実数$x,\ y$に対して,$|x|+|y| \leqq 2\sqrt{x^2+y^2}$が成り立つことを示せ.
高知大学 国立 高知大学 2012年 第3問
点Oを中心とする半径1の円に内接する正十角形の隣り合う頂点をA,Bとする.また,$\angle \text{OAB}$の二等分線と直線OBの交点をCとする.次の問いに答えよ.

(1)$\triangle$ABCと$\triangle$OABは相似になることを示せ.
(2)辺ABの長さを求めよ.
(3)$\displaystyle \cos \frac{2\pi}{5}$を求めよ.
(4)半径1の円に内接する正五角形の一辺の長さを求めよ.
佐賀大学 国立 佐賀大学 2012年 第1問
座標空間内で,原点$\mathrm{O}$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(b_1,\ b_2,\ 0)$,$\mathrm{C}(c_1,\ c_2,\ c_3)$を頂点とする正四面体を考える.ただし,$b_2$と$c_3$は正とする.次の問いに答えよ.

(1)$b_1,\ b_2$および$c_1,\ c_2,\ c_3$を求めよ.
(2)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
(3)$\mathrm{P}$は直線$\mathrm{BC}$上の点で,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{BC}}$は垂直であるとする.$\mathrm{P}$の座標を求めよ.また$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
岩手大学 国立 岩手大学 2012年 第5問
3次関数$y=f(x)$が$x=1-\sqrt{3}$と$x=1+\sqrt{3}$において極値をとり,点$(3,\ f(3))$における$y=f(x)$のグラフの接線が直線$y=4x-27$であるとき,次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)$x \geqq 0$のとき,$f(x) \geqq 3x^2-14x$が成立することを示せ.
岩手大学 国立 岩手大学 2012年 第5問
3次関数$y=f(x)$が$x=1-\sqrt{3}$と$x=1+\sqrt{3}$において極値をとり,点$(3,\ f(3))$における$y=f(x)$のグラフの接線が直線$y=4x-27$であるとき,次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)$x \geqq 0$のとき,$f(x) \geqq 3x^2-14x$が成立することを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。