タグ「証明」の検索結果

115ページ目:全1924問中1141問~1150問を表示)
九州大学 国立 九州大学 2012年 第2問
$2$次の正方行列$A,\ B$はそれぞれ
\begin{eqnarray}
A \left( \begin{array}{r}
-3 \\
5
\end{array} \right) = \left( \begin{array}{r}
0 \\
-1
\end{array} \right), & & \quad A \left( \begin{array}{r}
7 \\
-9
\end{array} \right) = \left( \begin{array}{r}
8 \\
-11
\end{array} \right), \nonumber \\
B \left( \begin{array}{r}
0 \\
-1
\end{array} \right) = \left( \begin{array}{r}
-5 \\
6
\end{array} \right), & & \quad B \left( \begin{array}{r}
8 \\
-11
\end{array} \right) = \left( \begin{array}{r}
-7 \\
10
\end{array} \right) \nonumber
\end{eqnarray}
をみたすものとする.このとき,以下の問いに答えよ.ただし,$E$は$2$次の単位行列を表すものとする.

(1)行列$A,\ B,\ A^2,\ B^2$を求めよ.
(2)$(AB)^3 = E$であることを示せ.
(3)行列$A$から始めて,$B$と$A$を交互に右から掛けて得られる行列
\[ A,\ AB,\ ABA,\ ABAB,\ \cdots \]
および行列$B$から始めて,$A$と$B$を交互に右から掛けて得られる行列
\[ B,\ BA,\ BAB,\ BABA,\ \cdots \]
を考える.これらの行列の内で,相異なるものをすべて成分を用いて表せ.
大阪大学 国立 大阪大学 2012年 第4問
5次式$f(x) = x^5+px^4+qx^3+rx^2+sx+t \quad (p,\ q,\ r,\ s,\ t \text{は実数})$について考える.このとき,以下の問いに答えよ.

(1)数列$f(0),\ f(1),\ f(2),\ f(3),\ f(4)$が等差数列であることと,
\[ f(x) = x(x-1)(x-2)(x-3)(x-4) + l x+m \quad (l,\ m \text{は実数}) \]
と書けることは互いに同値であることを示せ.
(2)$f(x)$は(1)の条件をみたすものとする.$\alpha$を実数,$k$を3以上の自然数とする.$k$項からなる数列
\[ f(\alpha),\ f(\alpha+1),\ f(\alpha+2),\ \cdots ,\ f(\alpha+k-1) \]
が等差数列となるような$\alpha,\ k$の組をすべて求めよ.
名古屋大学 国立 名古屋大学 2012年 第3問
$m$を正の奇数とする.

(1)$(x-1)^{101}$の展開式における$x^2$の項の係数を求めよ.
(2)$p$を正の整数とするとき,$(p-1)^m+1$は$p$で割り切れることを示せ.
(3)$r$を正の整数とし,$s=3^{r-1}m$とする.$2^s+1$は$3^r$で割り切れることを示せ.
九州大学 国立 九州大学 2012年 第1問
原点を$\mathrm{O}$とする座標空間に,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 0,\ 2)$,$\mathrm{C}(-2,\ 1,\ 3)$がある.このとき,以下の問いに答えよ.

(1)$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$は$\displaystyle\frac{\pi}{2}$より大きいことを示せ.
(2)点$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線と直線$\mathrm{BC}$との交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標を求めよ.
(3)$\triangle \mathrm{OAH}$の面積を求めよ.
九州大学 国立 九州大学 2012年 第2問
関数$f(x) = x^3+3x^2+x-1$を考える.曲線$C:y=f(x)$について,以下の問いに答えよ.

(1)$t \geqq 0$のとき,曲線$C$は傾きが$t$である接線を$2$本持つことを示せ.
(2)(1)において,傾きが$t$である$2$本の接線と曲線$C$との接点を,それぞれP$(p,\ f(p))$,Q$(q,\ f(q))$とする(ただし$p<q$).このとき,点Pと点Qは点A$(-1,\ 0)$に関して対称の位置にあることを示せ.
(3)$t \geqq 0$のとき,$2$点P,Qの間の距離の最小値を求めよ.また,最小値を与えるときのP,Qの$x$座標$p,\ q$もそれぞれ求めよ.
岡山大学 国立 岡山大学 2012年 第4問
$f(x)=4x(1-x)$とする.このとき
\[ \left\{
\begin{array}{l}
f_1(x)=f(x), \\
f_{n+1}(x) = f_n(f(x))
\end{array}
\right. \]
によって定まる多項式$f_n(x)$について以下の問いに答えよ.

(1)方程式$f_2(x)=0$を解け.
(2)$0 \leqq t < 1$を満たす定数$t$に対し,方程式$f(x)=t$の解を$\alpha(t),\ \beta(t)$とする.$c$が$0 \leqq c <1$かつ$f_n(c)=0$を満たすとき,$\alpha(c),\ \beta(c)$は$f_{n+1}(x)=0$の解であることを示せ.
(3)$0 \leqq x \leqq 1$範囲での方程式$f_n(x)=0$の異なる解の個数を$S_n$とする.このとき$S_{n+1}$を$S_n$で表し,一般項$S_n$を求めよ.
北海道大学 国立 北海道大学 2012年 第3問
次の問に答えよ.

(1)$x \geqq 0$のとき,$\displaystyle x- \frac{x^3}{6} \leqq \sin x \leqq x$を示せ.
(2)$x \geqq 0$のとき,$\displaystyle \frac{x^3}{3}-\frac{x^5}{30} \leqq \int_0^x t\sin t\, dt \leqq \frac{x^3}{3}$を示せ.
(3)極限値
\[ \lim_{x \to 0} \frac{\sin x - x\cos x}{x^3} \]
を求めよ.
北海道大学 国立 北海道大学 2012年 第5問
$\mathrm{A}$と$\mathrm{B}$の$2$チームが試合を行い,どちらかが先に$k$勝するまで試合をくり返す.各試合で$\mathrm{A}$が勝つ確率を$p$,$\mathrm{B}$が勝つ確率を$q$とし,$p+q=1$とする.$\mathrm{A}$が$\mathrm{B}$より先に$k$勝する確率を$P_k$とおく.

(1)$P_2$を$p$と$q$で表せ.
(2)$P_3$を$p$と$q$で表せ.
(3)$P_4$を$p$と$q$で表せ.
(4)$\displaystyle\frac{1}{2} < q < 1$のとき,$P_4 < P_3$であることを示せ.
神戸大学 国立 神戸大学 2012年 第1問
座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$と直線$\ell$があり,$\mathrm{A}$と$\ell$の距離と$\mathrm{B}$と$\ell$の距離の和が$1$であるという.以下の問に答えよ.

(1)$\ell$は$y$軸と平行でないことを示せ.
(2)$\ell$が線分$\mathrm{AB}$と交わるとき,$\ell$の傾きを求めよ.
(3)$\ell$が線分$\mathrm{AB}$と交わらないとき,$\ell$と原点との距離を求めよ.
神戸大学 国立 神戸大学 2012年 第1問
座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$と直線$\ell$があり,$\mathrm{A}$と$\ell$の距離と$\mathrm{B}$と$\ell$の距離の和が$1$であるという.以下の問に答えよ.

(1)$\ell$は$y$軸と平行でないことを示せ.
(2)$\ell$が線分$\mathrm{AB}$と交わるとき,$\ell$の傾きを求めよ.
(3)$\ell$が線分$\mathrm{AB}$と交わらないとき,$\ell$と原点との距離を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。